MAX3100
SPI/Microwire-Compatible
UART in QSOP-16
8 _______________________________________________________________________________________
MAX3100 Operations
Write Operations
Table 1 shows write-configuration data. A 16-bit
SPI/Microwire write configuration clears the receive
FIFO and the R, T, RA/FE, D0r–D7r, D0t–D7t, Pr, and Pt
registers. RTS and CTS remain unchanged. The new
configuration is valid on CS’s rising edge if the transmit
buffer is empty (T = 1) and transmission is over. If the
latest transmission has not been completed, the regis-
ters are updated when the transmission is over (T = 0).
The write-configuration bits (FEN, SHDNi, IR, ST, PE, L,
B3–B0) take effect after the current transmission is
over. The mask bits (TM, RM, PM, RAM) take effect
immediately after the 16th clock’s rising edge at SCLK.
Read Operations
Table 2 shows read-configuration data. This register
reads back the last configuration written to the
MAX3100. The device enters test mode if bit 0 = 1. In
this mode, if CS = 0, the RTS pin acts as the 16x clock
generator’s output. This may be useful for direct baud-
rate generation (in this mode, TX and RX are in digital
loopback).
Normally, the write-data register loads the TX-buffer
register. To change the RTS pin’s state without writing
data, set the TE bit. Setting the TE bit high inhibits the
write command (Table 3).
Reading data clears the R bit and interrupt IRQ (Table 4).
Register Functions
Table 5 shows read/write operation and power-on reset
state (POR), and describes each bit used in program-
ming the MAX3100. Figure 5 shows parity and word-
length control.
14
0
T
6
D6t
D6r
7
D7t
D7r
15 2
DIN 1 D2t
DOUT R D2r
BIT 3
D3t
D3r
0
D0t
D0r
1
D1t
D1r
4
D4t
D4r
5
D5t
D5r
10
TE
RA/FE
11
0
0
8
Pt
Pr
9
RTS
CTS
12
0
0
13
0
0
14
0
T
6
0
D6r
7
0
D7r
15 2
DIN 0 0
DOUT R D2r
BIT 3
0
D3r
0
0
D0r
1
0
D1r
4
0
D4r
5
0
D5r
10
0
RA/FE
11
0
0
8
0
Pr
9
0
CTS
12
0
0
13
0
0
Table 3. Write Data (D15, D14 = 1, 0)
Table 4. Read Data (D15, D14 = 0, 0)
14
1
T
6
0
ST
7
0
IR
15 2
DIN 0 0
DOUT R B2
BIT 3
0
B3
0
TEST
B0
1
0
B1
4
0
L
5
0
PE
10
0
RM
11
0
TM
8
0
RAM
9
0
PM
12
0
SHDNo
13
0
FEN
Table 2. Read Configuration (D15, D14 = 0, 1)
6
ST
0
7
IR
0
2
B2
0
3
B3
0
0
B0
0
1
B1
0
4
L
0
5
PE
0
10
RM
0
11
TM
0
8
RAM
0
9
PM
0
12
SHDNi
0
13
FEN
0
15 14
1
T
DIN 1
DOUT R
BIT
Table 1. Write Configuration (D15, D14 = 1, 1)