Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

DP83847ALQA56A

Part # DP83847ALQA56A
Description IC ETHERNET TRANSCEIVER 56WQFN
Category IC
Availability In Stock
Qty 4
Qty Price
1 + $3.29619
Manufacturer Available Qty
National Semiconductor Corp
  • Shipping Freelance Stock: 4
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

21 www.national.com
DP83847
Figure 7. Receive Block Diagram
4B/5B DECODER
DESCRAMBLER
DIGITAL
ADAPTIVE
EQUALIZATION
MLT-3 TO
BINARY
DECODER
RD±
RX_CLK
RXD[3:0] / RX_ER
INPUT BLW
COMPENSATION
BP_4B5B
BP_SCR
SIGNAL
DETECT
NRZI TO NRZ
DECODER
CODE GROUP
ALIGNMENT
SERIAL TO
PARALLEL
MUX
MUX
LINK STATUS
CLOCK
RECOVERY
MODULE
CLOCK
LINK
MONITOR
÷5
ADC
AGC
22 www.national.com
DP83847
period of 120 µs. Left uncompensated, events such as this
can cause packet loss.
3.3.2 Signal Detect
The signal detect function of the DP83847 is incorporated
to meet the specifications mandated by the ANSI FDDI TP-
PMD Standard as well as the IEEE 802.3 100BASE-TX
Standard for both voltage thresholds and timing parame-
ters.
Note that the reception of normal 10BASE-T link pulses
and fast link pulses per IEEE 802.3u Auto-Negotiation by
the 100BASE-TX receiver do not cause the DP83847 to
assert signal detect.
3.3.3 Digital Adaptive Equalization
When transmitting data at high speeds over copper twisted
pair cable, frequency dependent attenuation becomes a
concern. In high-speed twisted pair signalling, the fre-
quency content of the transmitted signal can vary greatly
during normal operation based primarily on the random-
ness of the scrambled data stream. This variation in signal
attenuation caused by frequency variations must be com-
pensated for to ensure the integrity of the transmission.
In order to ensure quality transmission when employing
MLT-3 encoding, the compensation must be able to adapt
to various cable lengths and cable types depending on the
installed environment. The selection of long cable lengths
for a given implementation, requires significant compensa-
tion which will over-compensate for shorter, less attenuat-
ing lengths. Conversely, the selection of short or
intermediate cable lengths requiring less compensation will
cause serious under-compensation for longer length
cables. The compensation or equalization must be adap-
tive to ensure proper conditioning of the received signal
independent of the cable length.
The DP83847 utilizes a extremely robust equalization
scheme referred as ‘Digital Adaptive Equalization’. Tradi-
tional designs use a pseudo adaptive equalization scheme
that determines the approximate cable length by monitor-
ing signal attenuation at certain frequencies. This attenua-
tion value was compared to the internal receive input
reference voltage. This comparison would indicate
the
amount of equalization to use. Although this scheme is
used successfully on the DP83223V twister, it is sensitive
to transformer mismatch, resistor variation and process
induced offset. The DP83223V also required an external
attenuation network to help match the incoming signal
amplitude to the internal reference.
The Digital Equalizer removes ISI (inter symbol interfer-
ence) from the receive data stream by continuously adapt-
ing to provide a filter with the inverse frequency response
of the channel. When used in conjunction with a gain
stage, this enables the receive 'eye pattern' to be opened
sufficiently to allow very reliable data recovery.
Traditionally 'adaptive' equalizers selected 1 of N filters in
an attempt to match the cables characteristics. This
approach will typically leave holes at certain cable lengths,
where the performance of the equalizer is not optimized.
The DP83847 equalizer is truly adaptive to any length of
cable up to 150m.
3.3.4 Clock Recovery Module
The Clock Recovery Module (CRM) accepts 125 Mb/s
MLT3 data from the equalizer. The DPLL locks onto the
125 Mb/s data stream and extracts a 125 MHz recovered
clock. The extracted and synchronized clock and data are
used as required by the synchronous receive operations as
generally depicted in Figure 7.
The CRM is implemented using an advanced all digital
Phase Locked Loop (PLL) architecture that replaces sensi-
tive analog circuitry. Using digital PLL circuitry allows the
DP83847 to be manufactured and specified to tighter toler-
ances.
3.3.5 NRZI to NRZ
In a typical application, the NRZI to NRZ decoder is
required in order to present NRZ formatted data to the
descrambler (or to the code-group alignment block, if the
descrambler is bypassed, or directly to the PCS, if the
receiver is bypassed).
3.3.6 Serial to Parallel
The 100BASE-TX receiver includes a Serial to Parallel
converter which supplies 5-bit wide data symbols to the
PCS Rx state machine.
3.3.7 Descrambler
A serial descrambler is used to de-scramble the received
NRZ data. The descrambler has to generate an identical
data scrambling sequence (N) in order to recover the origi-
nal unscrambled data (UD) from the scrambled data (SD)
as represented in the equations:
Synchronization of the descrambler to the original scram-
bling sequence (N) is achieved based on the knowledge
that the incoming scrambled data stream consists of
scrambled IDLE data. After the descrambler has recog-
nized 12 consecutive IDLE code-groups, where an
unscrambled IDLE code-group in 5B NRZ is equal to five
consecutive ones (11111), it will synchronize to the receive
data stream and generate unscrambled data in the form of
unaligned 5B code-groups.
In order to maintain synchronization, the descrambler must
continuously monitor the validity of the unscrambled data
that it generates. To ensure this, a line state monitor and a
hold timer are used to constantly monitor the synchroniza-
tion status. Upon synchronization of the descrambler the
hold timer starts a 722 µs countdown. Upon detection of
sufficient IDLE code-groups (58 bit times) within the 722 µs
period, the hold timer will reset and begin a new count-
down. This monitoring operation will continue indefinitely
given a properly operating network connection with good
signal integrity. If the line state monitor does not recognize
sufficient unscrambled IDLE code-groups within the 722 µs
period, the entire descrambler will be forced out of the cur-
rent state of synchronization and reset in order to re-
acquire synchronization.
3.3.8 Code-group Alignment
The code-group alignment module operates on unaligned
5-bit data from the descrambler (or, if the descrambler is
bypassed, directly from the NRZI/NRZ decoder) and con-
verts it into 5B code-group data (5 bits). Code-group align-
ment occurs after the J/K code-group pair is detected.
Once the J/K code-group pair (11000 10001) is detected,
subsequent data is aligned on a fixed boundary.
UD SD N()=
SD UD N()=
23 www.national.com
DP83847
3.3.9 4B/5B Decoder
The code-group decoder functions as a look up table that
translates incoming 5B code-groups into 4B nibbles. The
code-group decoder first detects the J/K code-group pair
preceded by IDLE code-groups and replaces the J/K with
MAC preamble. Specifically, the J/K 10-bit code-group pair
is replaced by the nibble pair (0101 0101). All subsequent
5B code-groups are converted to the corresponding 4B
nibbles for the duration of the entire packet. This conver-
sion ceases upon the detection of the T/R code-group pair
denoting the End of Stream Delimiter (ESD) or with the
reception of a minimum of two IDLE code-groups.
3.3.10 100BASE-TX Link Integrity Monitor
The 100 Base TX Link monitor ensures that a valid and sta-
ble link is established before enabling both the Transmit
and Receive PCS layer.
Signal detect must be valid for 395us to allow the link mon-
itor to enter the 'Link Up' state, and enable the transmit and
receive functions.
3.3.11 Bad SSD Detection
A Bad Start of Stream Delimiter (Bad SSD) is any transition
from consecutive idle code-groups to non-idle code-groups
which is not prefixed by the code-group pair /J/K.
If this condition is detected, the DP83847 will assert
RX_ER and present RXD[3:0] = 1110 to the MII for the
cycles that correspond to received 5B code-groups until at
least two IDLE code groups are detected. In addition, the
False Carrier Sense Counter register (FCSCR) will be
incremented by one.
Once at least two IDLE code groups are detected, RX_ER
and CRS become de-asserted.
3.4 10BASE-T TRANSCEIVER MODULE
The 10BASE-T Transceiver Module is IEEE 802.3 compli-
ant. It includes the receiver, transmitter, collision, heart-
beat, loopback, jabber, and link integrity functions, as
defined in the standard. An external filter is not required on
the 10BASE-T interface since this is integrated inside the
DP83847. This section focuses on the general 10BASE-T
system level operation.
3.4.1 Operational Modes
The DP83847 has two basic 10BASE-T operational
modes:
Half Duplex mode
Full Duplex mode
Half Duplex Mode
In Half Duplex mode the DP83847 functions as a standard
IEEE 802.3 10BASE-T transceiver supporting the
CSMA/CD protocol.
Full Duplex Mode
In Full Duplex mode the DP83847 is capable of simulta-
neously transmitting and receiving without asserting the
collision signal. The DP83847's 10 Mb/s ENDEC is
designed to encode and decode simultaneously.
3.4.2 Collision Detection and SQE
When in Half Duplex, a 10BASE-T collision is detected
when the receive and transmit channels are active simulta-
neously. Collisions are reported by the COL signal on the
MII. Collisions are also reported when a jabber condition is
detected.
The COL signal remains set for the duration of the collision.
If the ENDEC is receiving when a collision is detected it is
reported immediately (through the COL pin).
When heartbeat is enabled, approximately 1 µs after the
transmission of each packet, a Signal Quality Error (SQE)
signal of approximately 10-bit times is generated to indi-
cate successful transmission. SQE is reported as a pulse
on the COL signal of the MII.
The SQE test is inhibited when the PHY is set in full duplex
mode. SQE can also be inhibited by setting the
HEARTBEAT_DIS bit in the 10BTSCR register.
3.4.3 Carrier Sense
Carrier Sense (CRS) may be asserted due to receive activ-
ity once valid data is detected via the squelch function.
For 10 Mb/s Half Duplex operation, CRS is asserted during
either packet transmission or reception.
For 10 Mb/s Full Duplex operation, CRS is asserted only
during receive activity.
CRS is deasserted following an end of packet.
3.4.4 Normal Link Pulse Detection/Generation
The link pulse generator produces pulses as defined in the
IEEE 802.3 10BASE-T standard. Each link pulse is nomi-
nally 100 ns in duration and transmitted every 16 ms in the
absence of transmit data.
Link pulses are used to check the integrity of the connec-
tion with the remote end. If valid link pulses are not
received, the link detector disables the 10BASE-T twisted
pair transmitter, receiver and collision detection functions.
When the link integrity function is disabled
(FORCE_LINK_10 of the 10BTSCR register), good link is
forced and the 10BASE-T transceiver will operate regard-
less of the presence of link pulses.
3.4.5 Jabber Function
The jabber function monitors the DP83847's output and
disables the transmitter if it attempts to transmit a packet of
longer than legal size. A jabber timer monitors the transmit-
ter and disables the transmission if the transmitter is active
beyond the Jab time (20-150 ms).
Once disabled by the Jabber function, the transmitter stays
disabled for the entire time that the ENDEC module's inter-
nal transmit enable is asserted. This signal has to be de-
asserted for approximately 250-750 ms (the “unjab” time)
before the Jabber function re-enables the transmit outputs.
The Jabber function is only relevant in 10BASE-T mode.
3.4.6 Automatic Link Polarity Detection and Correction
The DP83847's 10BASE-T transceiver module incorpo-
rates an automatic link polarity detection circuit. When
seven consecutive inverted link pulses are received,
inverted polarity is reported.
PREVIOUS1234567891011121314NEXT