Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

MAX242CWN

Part # MAX242CWN
Description IC TXRX 2/2 FULL RS232 18SOIC
Category IC
Availability Out of Stock
Qty 0
Qty Price
1 + $0.57000



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
______________________________________________________________________________________ 13
TA1–TA4 TB1–TB4 RA1–RA4 RB1–RB4
0 0 0 0 Normal Operation All Active All Active All Active All Active
0 0 0 1 Normal Operation All Active All Active All Active
All 3-State, except
RB5 stays active on
MAX247
0 0 1 0 Normal Operation All Active All Active All 3-State All Active
0 0 1 1 Normal Operation All Active All Active All 3-State
All 3-State, except
RB5 stays active on
MAX247
0 1 0 0 Normal Operation All Active All 3-State All Active All Active
0 1 0 1 Normal Operation All Active All 3-State All Active
All 3-State, except
RB5 stays active on
MAX247
0 1 1 0 Normal Operation All Active All 3-State All 3-State All Active
0 1 1 1 Normal Operation All Active All 3-State All 3-State
All 3-State, except
RB5 stays active on
MAX247
1 0 0 0 Normal Operation All 3-State All Active All Active All Active
1 0 0 1 Normal Operation All 3-State All Active All Active
All 3-State, except
RB5 stays active on
MAX247
1 0 1 0 Normal Operation All 3-State All Active All 3-State All Active
1 0 1 1 Normal Operation All 3-State All Active All 3-State
All 3-State, except
RB5 stays active on
MAX247
1 1 0 0 Shutdown All 3-State All 3-State
Low-Power
Receive Mode
Low-Power
Receive Mode
1 1 0 1 Shutdown All 3-State All 3-State
Low-Power
Receive Mode
All 3-State, except
RB5 stays active on
MAX247
1 1 1 0 Shutdown All 3-State All 3-State All 3-State
Low-Power
Receive Mode
1 1 1 1 Shutdown All 3-State All 3-State All 3-State
All 3-State, except
RB5 stays active on
MAX247
Table 1d. MAX247/MAX248/MAX249 Control Pin Configurations
MAX248
OPERATION
STATUS
ENRB
MAX247 TA1–TA4 TB1–TB4 RA1–RA4 RB1–RB5
TRANSMITTERS
ENRAENTBENTA
MAX249 TA1–TA3 TB1–TB3 RA1–RA5 RB1–RB5
RECEIVERS
MAX220–MAX249
_______________Detailed Description
The MAX220–MAX249 contain four sections: dual
charge-pump DC-DC voltage converters, RS-232 dri-
vers, RS-232 receivers, and receiver and transmitter
enable control inputs.
Dual Charge-Pump Voltage Converter
The MAX220–MAX249 have two internal charge-pumps
that convert +5V to ±10V (unloaded) for RS-232 driver
operation. The first converter uses capacitor C1 to dou-
ble the +5V input to +10V on C3 at the V+ output. The
second converter uses capacitor C2 to invert +10V to
-10V on C4 at the V- output.
A small amount of power may be drawn from the +10V
(V+) and -10V (V-) outputs to power external circuitry
(see the Typical Operating Characteristics section),
except on the MAX225 and MAX245–MAX247, where
these pins are not available. V+ and V- are not regulated,
so the output voltage drops with increasing load current.
Do not load V+ and V- to a point that violates the mini-
mum ±5V EIA/TIA-232E driver output voltage when
sourcing current from V+ and V- to external circuitry.
When using the shutdown feature in the MAX222,
MAX225, MAX230, MAX235, MAX236, MAX240,
MAX241, and MAX245–MAX249, avoid using V+ and V-
to power external circuitry. When these parts are shut
down, V- falls to 0V, and V+ falls to +5V. For applica-
tions where a +10V external supply is applied to the V+
pin (instead of using the internal charge pump to gen-
erate +10V), the C1 capacitor must not be installed and
the SHDN pin must be tied to V
CC
. This is because V+
is internally connected to V
CC
in shutdown mode.
RS-232 Drivers
The typical driver output voltage swing is ±8V when
loaded with a nominal 5k RS-232 receiver and V
CC
=
+5V. Output swing is guaranteed to meet the EIA/TIA-
232E and V.28 specification, which calls for ±5V mini-
mum driver output levels under worst-case conditions.
These include a minimum 3k load, V
CC
= +4.5V, and
maximum operating temperature. Unloaded driver out-
put voltage ranges from (V+ -1.3V) to (V- +0.5V).
Input thresholds are both TTL and CMOS compatible.
The inputs of unused drivers can be left unconnected
since 400k input pull-up resistors to V
CC
are built in
(except for the MAX220). The pull-up resistors force the
outputs of unused drivers low because all drivers invert.
The internal input pull-up resistors typically source 12µA,
except in shutdown mode where the pull-ups are dis-
abled. Driver outputs turn off and enter a high-imped-
ance state—where leakage current is typically
microamperes (maximum 25µA)—when in shutdown
mode, in three-state mode, or when device power is
removed. Outputs can be driven to ±15V. The power-
supply current typically drops to 8µA in shutdown mode.
The MAX220 does not have pull-up resistors to force the
outputs of the unused drivers low. Connect unused
inputs to GND or V
CC
.
The MAX239 has a receiver three-state control line, and
the MAX223, MAX225, MAX235, MAX236, MAX240,
and MAX241 have both a receiver three-state control
line and a low-power shutdown control. Table 2 shows
the effects of the shutdown control and receiver three-
state control on the receiver outputs.
The receiver TTL/CMOS outputs are in a high-imped-
ance, three-state mode whenever the three-state enable
line is high (for the MAX225/MAX235/MAX236/MAX239–
MAX241), and are also high-impedance whenever the
shutdown control line is high.
When in low-power shutdown mode, the driver outputs
are turned off and their leakage current is less than 1µA
with the driver output pulled to ground. The driver output
leakage remains less than 1µA, even if the transmitter
output is backdriven between 0V and (V
CC
+ 6V). Below
-0.5V, the transmitter is diode clamped to ground with
1k series impedance. The transmitter is also zener
clamped to approximately V
CC
+ 6V, with a series
impedance of 1k.
The driver output slew rate is limited to less than 30V/µs
as required by the EIA/TIA-232E and V.28 specifica-
tions. Typical slew rates are 24V/µs unloaded and
10V/µs loaded with 3 and 2500pF.
RS-232 Receivers
EIA/TIA-232E and V.28 specifications define a voltage
level greater than 3V as a logic 0, so all receivers invert.
Input thresholds are set at 0.8V and 2.4V, so receivers
respond to TTL level inputs as well as EIA/TIA-232E and
V.28 levels.
The receiver inputs withstand an input overvoltage up
to ±25V and provide input terminating resistors with
+5V-Powered, Multichannel RS-232
Drivers/Receivers
14 ______________________________________________________________________________________
PART
SHDN
EN
EN(R)
RECEIVERS
MAX223 __
Low
High
High
X
Low
High
High Impedance
Active
High Impedance
MAX225 __ __
High Impedance
Active
__
MAX235
MAX236
MAX240
Low
Low
High
__ __
Low
High
X
High Impedance
Active
High Impedance
Table 2. Three-State Control of Receivers
Low
High
SHDN
__
MAX220–MAX249
+5V-Powered, Multichannel RS-232
Drivers/Receivers
______________________________________________________________________________________ 15
nominal 5k values. The receivers implement Type 1
interpretation of the fault conditions of V.28 and
EIA/TIA-232E.
The receiver input hysteresis is typically 0.5V with a
guaranteed minimum of 0.2V. This produces clear out-
put transitions with slow-moving input signals, even
with moderate amounts of noise and ringing. The
receiver propagation delay is typically 600ns and is
independent of input swing direction.
Low-Power Receive Mode
The low-power receive-mode feature of the MAX223,
MAX242, and MAX245–MAX249 puts the IC into shut-
down mode but still allows it to receive information. This
is important for applications where systems are periodi-
cally awakened to look for activity. Using low-power
receive mode, the system can still receive a signal that
will activate it on command and prepare it for communi-
cation at faster data rates. This operation conserves
system power.
Negative Threshold—MAX243
The MAX243 is pin compatible with the MAX232A, differ-
ing only in that RS-232 cable fault protection is removed
on one of the two receiver inputs. This means that control
lines such as CTS and RTS can either be driven or left
floating without interrupting communication. Different
cables are not needed to interface with different pieces of
equipment.
The input threshold of the receiver without cable fault
protection is -0.8V rather than +1.4V. Its output goes
positive only if the input is connected to a control line
that is actively driven negative. If not driven, it defaults
to the 0 or “OK to send” state. Normally‚ the MAX243’s
other receiver (+1.4V threshold) is used for the data line
(TD or RD)‚ while the negative threshold receiver is con-
nected to the control line (DTR‚ DTS‚ CTS‚ RTS, etc.).
Other members of the RS-232 family implement the
optional cable fault protection as specified by EIA/TIA-
232E specifications. This means a receiver output goes
high whenever its input is driven negative‚ left floating‚
or shorted to ground. The high output tells the serial
communications IC to stop sending data. To avoid this‚
the control lines must either be driven or connected
with jumpers to an appropriate positive voltage level.
Shutdown—MAX222–MAX242
On the MAX222‚ MAX235‚ MAX236‚ MAX240‚ and
MAX241‚ all receivers are disabled during shutdown.
On the MAX223 and MAX242‚ two receivers continue to
operate in a reduced power mode when the chip is in
shutdown. Under these conditions‚ the propagation
delay increases to about 2.5µs for a high-to-low input
transition. When in shutdown, the receiver acts as a
CMOS inverter with no hysteresis. The MAX223 and
MAX242 also have a receiver output enable input (EN
for the MAX242 and EN for the MAX223) that allows
receiver output control independent of SHDN (SHDN
for MAX241). With all other devices‚ SHDN (SHDN for
MAX241) also disables the receiver outputs.
The MAX225 provides five transmitters and five
receivers‚ while the MAX245 provides ten receivers and
eight transmitters. Both devices have separate receiver
and transmitter-enable controls. The charge pumps
turn off and the devices shut down when a logic high is
applied to the ENT input. In this state, the supply cur-
rent drops to less than 25µA and the receivers continue
to operate in a low-power receive mode. Driver outputs
enter a high-impedance state (three-state mode). On
the MAX225‚ all five receivers are controlled by the
ENR input. On the MAX245‚ eight of the receiver out-
puts are controlled by the ENR input‚ while the remain-
ing two receivers (RA5 and RB5) are always active.
RA1–RA4 and RB1–RB4 are put in a three-state mode
when ENR is a logic high.
Receiver and Transmitter Enable
Control Inputs
The MAX225 and MAX245–MAX249 feature transmitter
and receiver enable controls.
The receivers have three modes of operation: full-speed
receive (normal active)‚ three-state (disabled)‚ and low-
power receive (enabled receivers continue to function
at lower data rates). The receiver enable inputs control
the full-speed receive and three-state modes. The
transmitters have two modes of operation: full-speed
transmit (normal active) and three-state (disabled). The
transmitter enable inputs also control the shutdown
mode. The device enters shutdown mode when all
transmitters are disabled. Enabled receivers function in
the low-power receive mode when in shutdown.
PREVIOUS1234567891011NEXT