Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

BAR43AFILM

Part # BAR43AFILM
Description SCHOTTKY 30V 0.1A 3PIN SOT-23- Tape and Reel
Category DIODE
Availability Out of Stock
Qty 0
Qty Price
1 + $0.01171



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

®
1/5
Table 1: Main Product Characteristics
I
F(AV)
0.1 A
V
RRM
30 V
T
j
150°C
V
F
(max) 0.33 and 0.40 V
BAR42FILM
BAR43FILM
SMALL SIGNAL SCHOTTKY DIODE
REV. 3
Table 3: Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
Repetitive peak reverse voltage 30 V
I
F(AV)
Continuous forward current 0.1 A
I
FSM
Surge non repetitive forward current t
p
= 10ms sinusoidal 0.75 A
P
tot
Power dissipation (note 1) T
amb
= 25°C 250 mW
T
stg
Maximum storage temperature range -65 to + 150 °C
T
j
Maximum operating junction temperature * 150 °C
T
L
Maximum temperature for soldering during 10s 260 °C
Note 1: for double diodes, P
tot
is the total dissipation of both diodes.
* : thermal runaway condition for a diode on its own heatsink
dPtot
dTj
---------------
1
Rth j a
()
-------------------------->
K
A
K
A
Nc
A2
A1
K
K
A1
A2
A2
A1
K2
K1
A1
K2
A2
K1
K1
A
K2
K2
A
K1
BAR42FILM
BAR43FILM
BAR43CFILM
BAR43AFILM
BAR43ASFILM
SOT23-3L
April 2005
FEATURES AND BENEFITS
Very small conduction losses
Negligible switching losses
Low forward voltage drop
Surface mount device
DESCRIPTION
Genral purpose metal to silicon diodes featuring
very low turn-on voltage and fast switching.
Table 2: Order Codes
Part Number Marking
BAR42FILM D94
BAR43FILM D95
BAR43AFILM DB1
BAR43CFILM DB2
BAR43SFILM DA5
BAR42FILM / BAR43FILM
2/5
Table 4: Thermal Resistance
Table 5: Static Electrical Characteristics
Pulse test: * tp = 5 ms, δ < 2%
** tp = 380 µs, δ < 2%
Table 6: Dynamic Characteristics (T
j
= 25°C)
Symbol Parameter Value Unit
R
th(j-a)
Junction to ambient (*) 500 °C/W
(*) Mounted on epoxy board with recommended pad layout.
Symbol Parameter Tests conditions Min. Typ Max. Unit
V
BR
Breakdown voltage T
j
= 25°C I
R
= 100µA 30 V
I
R
*
Reverse leakage current
T
j
= 25°C
V
R
= V
RRM
500 nA
T
j
= 100°C
100
µA
V
F
**
Forward voltage drop
T
j
= 25°C
BAR42
I
F
= 10mA
0.35 0.40
V
I
F
= 50mA
0.50 0.65
BAR43
I
F
= 2mA
0.26 0.33
I
F
= 15mA
0.45
ALL
I
F
= 100mA
1
Symbol Parameter Tests conditions Min. Typ. Max. Unit
C Junction capacitance
T
j
= 25°C V
R
= 1V F = 1 MHz
7pF
t
rr
Reverse recovery time
I
F
= 10 mA I
R
= 10 mA
T
j
= 25°C I
rr
= 1 mA R
L
= 100
5ns
η Detection efficiency
C
L
= 300 pF F = 45 MHz
T
j
= 25°C V
i
= 2 V R
L
= 50
80 %
Figure 1: Forward voltage drop versus forward
current (typical values, low level)
Figure 2: Forward voltage drop versus forward
current (typical values, high level)
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.00E+0
2.00E-3
4.00E-3
6.00E-3
8.00E-3
1.00E-2
1.20E-2
1.40E-2
1.60E-2
1.80E-2
2.00E-2
I (A)
FM
V (V)
FM
T =25°C
j
T =50°C
j
T =100°C
j
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
1E-3
1E-2
1E-1
5E-1
I (A)
FM
V (V)
FM
T =25°C
j
T =50°C
j
T =100°C
j
BAR42FILM / BAR43FILM
3/5
Figure 3: Reverse leakage current versus
reverse voltage applied (typical values)
Figure 4: Reverse leakage current versus
junction temperature
Figure 5: Junction capacitance versus reverse
voltage applied (typical values)
Figure 6: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy FR4 with recommended pad
layout, e(Cu)=35µm)
Figure 7: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35µm)
0 5 10 15 20 25 30
1E-2
1E-1
1E+0
1E+1
1E+2
I (µA)
R
V (V)
R
T =100°C
j
T =50°C
j
T =25°C
j
0 25 50 75 100 125 150
1E-2
1E-1
1E+0
1E+1
1E+2
1E+3
1E+4
I (µA)
R
V (V)
R
V =30V
R
12 5102030
1
2
5
10
C(pF)
V (V)
R
F=1MHz
T =25°C
j
1E-3 1E-2 1E-1 1E+0 1E+1 1E+2
0.01
0.10
1.00
Z/R
th(j-a) th(j-a)
T
δ
=tp/T
tp
t (s)
p
δ = 0.5
δ = 0.2
δ = 0.1
Single pulse
0 5 10 15 20 25 30 35 40 45 50
150
200
250
300
350
R (°C/W)
th(j-a)
S(CU)(mm²)
P=0.25W
12NEXT