Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

MAX149AEAP

Part # MAX149AEAP
Description +2.7V TO +5.25V LOW-POWER 8-CHANNEL SERIAL 10-BIT ADCS - B
Category CONVERTER
Availability In Stock
Qty 63
Qty Price
1 - 13 $12.41688
14 - 26 $9.87707
27 - 39 $9.31266
40 - 52 $8.65419
53 + $7.71352
Manufacturer Available Qty
MAXIM
Date Code: 0104
  • Shipping Freelance Stock: 63
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

MAX148/MAX149
+2.7V to +5.25V, Low-Power, 8-Channel,
Serial 10-Bit ADCs
______________________________________________________________________________________ 13
from the burden of running the SAR conversion clock
and allows the conversion results to be read back at the
processor’s convenience, at any clock rate from 0MHz
to 2MHz. SSTRB goes low at the start of the conversion
and then goes high when the conversion is complete.
SSTRB is low for a maximum of 7.5µs (SHDN = FLOAT),
during which time SCLK should remain low for best
noise performance.
An internal register stores data when the conversion is
in progress. SCLK clocks the data out of this register at
any time after the conversion is complete. After SSTRB
goes high, the next falling clock edge produces the
MSB of the conversion at DOUT, followed by the
remaining bits in MSB-first format (Figure 9). CS does
not need to be held low once a conversion is started.
Pulling CS high prevents data from being clocked into
the MAX148/MAX149 and three-states DOUT, but it
does not adversely affect an internal clock mode con-
version already in progress. When internal clock mode
is selected, SSTRB does not go into a high-
impedance state when CS goes high.
Figure 10 shows the SSTRB timing in internal clock
mode. In this mode, data can be shifted in and out of
the MAX148/MAX149 at clock rates exceeding 2.0MHz if
the minimum acquisition time (t
ACQ
) is kept above 1.5µs.
Data Framing
The falling edge of CS does not start a conversion.
The first logic high clocked into DIN is interpreted as a
start bit and defines the first bit of the control byte. A
conversion starts on SCLK’s falling edge, after the eighth
Figure 9. Internal Clock Mode Timing
Figure 10. Internal Clock Mode SSTRB Detailed Timing
MAX148/MAX149
+2.7V to +5.25V, Low-Power, 8-Channel,
Serial 10-Bit ADCs
14 ______________________________________________________________________________________
bit of the control byte (the PD0 bit) is clocked into DIN.
The start bit is defined as follows:
The first high bit clocked into DIN with CS low any
time the converter is idle; e.g., after V
DD
is applied.
OR
The first high bit clocked into DIN after bit 3 of a con-
version in progress is clocked onto the DOUT pin.
If CS
is toggled before the current conversion is com-
plete, the next high bit clocked into DIN is recognized as
a start bit; the current conversion is terminated, and a
new one is started.
The fastest the MAX148/MAX149 can run with CS held
low between conversions is 15 clocks per conversion.
Figure 11a shows the serial-interface timing necessary to
perform a conversion every 15 SCLK cycles in external
clock mode. If CS is tied low and SCLK is continuous,
guarantee a start bit by first clocking in 16 zeros.
Most microcontrollers (µCs) require that conversions
occur in multiples of 8 SCLK clocks; 16 clocks per con-
version is typically the fastest that a µC can drive the
MAX148/MAX149. Figure 11b shows the serial-
interface timing necessary to perform a conversion every
16 SCLK cycles in external clock mode.
__________ Applications Information
Power-On Reset
When power is first applied, and if SHDN is not pulled
low, internal power-on reset circuitry activates the
MAX148/MAX149 in internal clock mode, ready to con-
vert with SSTRB = high. After the power supplies stabi-
lize, the internal reset time is 10µs, and no conversions
should be performed during this phase. SSTRB is high
on power-up and, if CS is low, the first logical 1 on DIN
is interpreted as a start bit. Until a conversion takes
place, DOUT shifts out zeros. (Also see Table 4.)
Reference-Buffer Compensation
In addition to its shutdown function, SHDN selects inter-
nal or external compensation. The compensation
affects both power-up time and maximum conversion
speed. The100kHz minimum clock rate is limited by
droop on the sample-and-hold and is independent of
the compensation used.
Float SHDN to select external compensation. The
Typical Operating Circuit
uses a 4.7µF capacitor at
VREF. A 4.7µF value ensures reference-buffer stability
and allows converter operation at the 2MHz full clock
speed. External compensation increases power-up
time (see the
Choosing Power-Down Mode
section and
Table 4).
Pull SHDN high to select internal compensation.
Internal compensation requires no external capacitor at
VREF and allows for the shortest power-up times. The
maximum clock rate is 2MHz in internal clock mode
and 400kHz in external clock mode.
Choosing Power-Down Mode
You can save power by placing the converter in a low-
current shutdown state between conversions. Select full
power-down mode or fast power-down mode via bits 1
and 0 of the DIN control byte with SHDN high or floating
(Tables 1 and 5). In both software power-down modes,
the serial interface remains operational, but the ADC
does not convert. Pull SHDN low at any time to shut
down the converter completely. SHDN overrides bits 1
and 0 of the control byte.
Full power-down mode turns off all chip functions that
draw quiescent current, reducing supply current to 2µA
(typ). Fast power-down mode turns off all circuitry
except the bandgap reference. With fast power-down
mode, the supply current is 30µA. Power-up time can be
shortened to 5µs in internal compensation mode.
Table 4 shows how the choice of reference-buffer com-
pensation and power-down mode affects both power-up
REFERENCE
BUFFER
REFERENCE-
BUFFER
COMPENSATION
MODE
VREF
CAPACITOR
(µF)
POWER-DOWN
MODE
POWER-UP
DELAY
(µs)
MAXIMUM
SAMPLING RATE
(ksps)
Enabled Internal Fast 5 26
Enabled Internal Full 300 26
Enabled External 4.7 Fast See Figure 14c 133
Enabled External 4.7 Full See Figure 14c 133
Disabled Fast 2 133
Disabled Full 2 133
Table 4. Typical Power-Up Delay Times
MAX148/MAX149
+2.7V to +5.25V, Low-Power, 8-Channel,
Serial 10-Bit ADCs
______________________________________________________________________________________ 15
delay and maximum sample rate. In external compensa-
tion mode, power-up time is 20ms with a 4.7µF compen-
sation capacitor when the capacitor is initially fully
discharged. From fast power-down, start-up time can be
eliminated by using low-leakage capacitors that do not
discharge more than 1/2LSB while shut down. In power-
down, leakage currents at VREF cause droop on the ref-
erence bypass capacitor. Figures 12a and 12b show
the various power-down sequences in both external and
internal clock modes.
Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing
Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing
Figure 12a. Timing Diagram Power-Down Modes, External Clock
PREVIOUS12345678NEXT