Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

3000

Part # 3000
Description DUP RCPT PORTABLE OUTLET BX
Category LED
Availability Out of Stock
Qty 0
Qty Price
1 + $0.15000



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

Dual-Core Intel® Xeon® Processor 3000 Series Datasheet 21
Electrical Specifications
Notes:
1. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These
specifications will be updated with characterized data from silicon measurements at a later date.
2. Adherence to the voltage specifications for the processor are required to ensure reliable processor operation.
3. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can
not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same
frequency may have different settings within the VID range. Note this differs from the VID employed by the processor during a
power management event (Thermal Monitor 2, Enhanced Intel SpeedStep
®
Technology, or Extended HALT State).
4. These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required.
See Section 2.3 and Table 2-1 for more information.
5. The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket with a 100 MHz
bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of ground
wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.
6. Refer to Table 2-5 and Figure 2-1 for the minimum, typical, and maximum V
CC
allowed for a given current. The processor should
not be subjected to any V
CC
and I
CC
combination wherein V
CC
exceeds V
CC_MAX
for a given current.
7. I
CC_MAX
specification is based on the V
CC_MAX
loadline. Refer to Figure 2-1 for details.
8. V
TT
must be provided via a separate voltage source and not be connected to V
CC
. This specification is measured at the land.
9. Baseboard bandwidth is limited to 20 MHz.
10.This is maximum total current drawn from V
TT
plane by only the processor. This specification does not include the current coming
from RTT (through the signal line). Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines
For Desktop LGA775 Socket to determine the total I
TT
drawn by the system. This parameter is based on design characterization
and is not tested.
Table 2-5. V
CC
Static and Transient Tolerance for Processors with 4 MB L2 Cache
I
CC
(A)
Voltage Deviation from VID Setting (V)
1, 2, 3, 4
Notes:
1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in
Section 2.6.3.
2. This table is intended to aid in reading discrete points on Figure 2-1.
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to
the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775
Socket for socket loadline guidelines and VR implementation details.
4. Adherence to this loadline specification is required to ensure reliable processor operation.
Maximum Voltage
1.30 mΩ
Typical Voltage
1.425 mΩ
Minimum Voltage
1.55 mΩ
0 0.000 -0.019 -0.038
5 -0.007 -0.026 -0.046
10 -0.013 -0.033 -0.054
15 -0.020 -0.040 -0.061
20 -0.026 -0.048 -0.069
25 -0.033 -0.055 -0.077
30 -0.039 -0.062 -0.085
35 -0.046 -0.069 -0.092
40 -0.052 -0.076 -0.100
45 -0.059 -0.083 -0.108
50 -0.065 -0.090 -0.116
55 -0.072 -0.097 -0.123
60 -0.078 -0.105 -0.131
65 -0.085 -0.112 -0.139
70 -0.091 -0.119 -0.147
75 -0.098 -0.126 -0.154
Electrical Specifications
22 Dual-Core Intel® Xeon® Processor 3000 Series Datasheet
Notes:
1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in
Section 2.6.3.
2. This loadline specification shows the deviation from the VID set point.
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer
to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop
LGA775 Socket for socket loadline guidelines and VR implementation details.
Figure 2-1. V
CC
Static and Transient Tolerance for Processors with 4 MB L2 Cache
VID - 0.000
VID - 0.013
VID - 0.025
VID - 0.038
VID - 0.050
VID - 0.063
VID - 0.075
VID - 0.088
VID - 0.100
VID - 0.113
VID - 0.125
VID - 0.138
VID - 0.150
VID - 0.163
0 10203040506070
Icc [A]
Vcc [V]
Vcc Maximum
Vcc Typical
Vcc Minimum
Table 2-6. V
CC
Static and Transient Tolerance for Processors with 2 MB L2 Cache
(Sheet 1 of 2)
I
CC
(A)
Voltage Deviation from VID Setting (V)
1, 2, 3, 4
Maximum Voltage
1.40 mΩ
Typical Voltage
1.53 mΩ
Minimum Voltage
1.65 mΩ
0 0.000 -0.019 -0.038
5 -0.007 -0.027 -0.046
10 -0.014 -0.034 -0.055
15 -0.021 -0.042 -0.063
20 -0.028 -0.050 -0.071
25 -0.035 -0.057 -0.079
30 -0.042 -0.065 -0.088
35 -0.049 -0.072 -0.096
40 -0.056 -0.080 -0.104
45 -0.063 -0.088 -0.112
50 -0.070 -0.095 -0.121
55 -0.077 -0.103 -0.129
60 -0.084 -0.111 -0.137
Dual-Core Intel® Xeon® Processor 3000 Series Datasheet 23
Electrical Specifications
Notes:
1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in
Section 2.6.3.
2. This loadline specification shows the deviation from the VID set point.
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer
to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop
LGA775 Socket for socket loadline guidelines and VR implementation details.
65 -0.091 -0.118 -0.145
70 -0.098 -0.126 -0.154
75 -0.105 -0.133 -0.162
Notes:
1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in
Section 2.6.3.
2. This table is intended to aid in reading discrete points on Figure 2-2.
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to
the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775
Socket for socket loadline guidelines and VR implementation details.
4. Adherence to this loadline specification is required to ensure reliable processor operation.
Table 2-6. V
CC
Static and Transient Tolerance for Processors with 2 MB L2 Cache
(Sheet 2 of 2)
I
CC
(A)
Voltage Deviation from VID Setting (V)
1, 2, 3, 4
Maximum Voltage
1.40 mΩ
Typical Voltage
1.53 mΩ
Minimum Voltage
1.65 mΩ
Figure 2-2. V
CC
Static and Transient Tolerance for Processors with 2 MB L2 Cache
VID - 0.000
VID - 0.013
VID - 0.025
VID - 0.038
VID - 0.050
VID - 0.063
VID - 0.075
VID - 0.088
VID - 0.100
VID - 0.113
VID - 0.125
VID - 0.138
VID - 0.150
VID - 0.163
VID - 0.175
0 10203040506070
Icc [A]
Vcc [V]
Vcc Maximum
Vcc Typical
Vcc Minimum
PREVIOUS12345678910111213NEXT