Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

3000

Part # 3000
Description DUP RCPT PORTABLE OUTLET BX
Category LED
Availability Out of Stock
Qty 0
Qty Price
1 + $0.15000



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

Electrical Specifications
18 Dual-Core Intel® Xeon® Processor 3000 Series Datasheet
2.4 Market Segment Identification (MSID)
The MSID[1:0] signals may be used as outputs to determine the Market Segment of
the processor. Table 2-2 provides details regarding the state of MSID[1:0]. A circuit can
be used to prevent 130 W TDP processors from booting on boards optimized for
65 W TDP.
Notes:
1. The MSID[1:0] signals are provided to indicate the Market Segment for the processor and may be used for
future processor compatibility or for keying. Circuitry on the motherboard may use these signals to identify
the processor installed.
2. These signals are not connected to the processor die.
3. A logic 0 is achieved by pulling the signal to ground on the package.
4. A logic 1 is achieved by leaving the signal as a no connect on the package.
2.5 Reserved, Unused, and TESTHI Signals
All RESERVED lands must remain unconnected. Connection of these lands to V
CC
, V
SS
,
V
TT
, or to any other signal (including each other) can result in component malfunction
or incompatibility with future processors. See Chapter 4 for a land listing of the
processor and the location of all RESERVED lands.
In a system level design, on-die termination has been included by the processor to
allow signals to be terminated within the processor silicon. Most unused GTL+ inputs
should be left as no connects as GTL+ termination is provided on the processor silicon.
However, see Table 2-8 for details on GTL+ signals that do not include on-die
termination.
Unused active high inputs, should be connected through a resistor to ground (V
SS
).
Unused outputs can be left unconnected, however this may interfere with some TAP
functions, complicate debug probing, and prevent boundary scan testing. A resistor
must be used when tying bidirectional signals to power or ground. When tying any
signal to power or ground, a resistor will also allow for system testability. Resistor
values should be within ± 20% of the impedance of the motherboard trace for front
side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the
same value as the on-die termination resistors (R
TT
). For details, see Table 2-15.
TAP and CMOS signals do not include on-die termination. Inputs and used outputs must
be terminated on the motherboard. Unused outputs may be terminated on the
motherboard or left unconnected. Note that leaving unused outputs unterminated may
interfere with some TAP functions, complicate debug probing, and prevent boundary
scan testing.
All TESTHI[13:0] lands should be individually connected to V
TT
via a pull-up resistor
that matches the nominal trace impedance.
Table 2-2. Market Segment Selection Truth Table for MSID[1:0]
1, 2, 3, 4
MSID1 MSID0 Description
00Dual-Core Intel
®
Xeon
®
processor 3000 series
01Reserved
10Reserved
11Reserved
Dual-Core Intel® Xeon® Processor 3000 Series Datasheet 19
Electrical Specifications
The TESTHI signals may use individual pull-up resistors or be grouped together as
detailed below. A matched resistor must be used for each group:
TESTHI[1:0]
TESTHI[7:2]
TESTHI8/FC42 – cannot be grouped with other TESTHI signals
TESTHI9/FC43 – cannot be grouped with other TESTHI signals
TESTHI10 – cannot be grouped with other TESTHI signals
TESTHI11 – cannot be grouped with other TESTHI signals
TESTHI12/FC44 – cannot be grouped with other TESTHI signals
TESTHI13 – cannot be grouped with other TESTHI signals
However, utilization of boundary scan test will not be functional if these lands are
connected together. For optimum noise margin, all pull-up resistor values used for
TESTHI[13:0] lands should have a resistance value within ± 20% of the impedance of
the board transmission line traces. For example, if the nominal trace impedance is 50 Ω,
then a value between 40 Ω and 60 Ω should be used.
2.6 Voltage and Current Specification
2.6.1 Absolute Maximum and Minimum Ratings
Table 2-3 specifies absolute maximum and minimum ratings only and lie outside the
functional limits of the processor. Within functional operation limits, functionality and
long-term reliability can be expected.
At conditions outside functional operation condition limits, but within absolute
maximum and minimum ratings, neither functionality nor long-term reliability can be
expected. If a device is returned to conditions within functional operation limits after
having been subjected to conditions outside these limits, but within the absolute
maximum and minimum ratings, the device may be functional, but with its lifetime
degraded depending on exposure to conditions exceeding the functional operation
condition limits.
At conditions exceeding absolute maximum and minimum ratings, neither functionality
nor long-term reliability can be expected. Moreover, if a device is subjected to these
conditions for any length of time then, when returned to conditions within the
functional operating condition limits, it will either not function, or its reliability will be
severely degraded.
Although the processor contains protective circuitry to resist damage from static
electric discharge, precautions should always be taken to avoid high static voltages or
electric fields.
Electrical Specifications
20 Dual-Core Intel® Xeon® Processor 3000 Series Datasheet
2.6.2 DC Voltage and Current Specification
Table 2-3. Absolute Maximum and Minimum Ratings
Symbol Parameter Min Max Unit Notes
1, 2
Notes:
1. For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be
satisfied.
2. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.
V
CC
Core voltage with respect to V
SS
–0.3 1.55 V -
V
TT
FSB termination voltage with respect to
V
SS
–0.3 1.55 V -
T
C
Processor case temperature See
Chapter 5
See
Chapter 5
°C -
T
STORAGE
Processor storage temperature –40 85 °C
3, 4, 5
3. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive
a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-
term reliability of the device. For functional operation, refer to the processor case temperature specifications.
4. This rating applies to the processor and does not include any tray or packaging.
5. Failure to adhere to this specification can affect the long term reliability of the processor.
Table 2-4. Voltage and Current Specifications
Symbol Parameter Min Typ Max Unit Notes
1, 2
VID Range VID 0.8500 1.5 V
3
V
CC
Processor Number
(4 MB L2 Cache)
3085
3075
3070
3065
3060
V
CC
for
775_VR_CONFIG_06
3.00 GHz
2.66 GHz
2.66 GHz
2.33 GHz
2.40 GHz
Refer to Table 2-5 and
Figure 2-1
V
4, 5, 6
Processor Number
(2 MB L2 Cache)
3050
3040
V
CC
for
775_VR_CONFIG_06
2.13 GHz
1.86 GHz
Refer to Table 2-6 and
Figure 2-2
V
CC_BOOT
Default V
CC
voltage for initial power up 1.10 V
V
CCPLL
PLL V
CC
- 5% 1.50 + 5%
I
CC
Processor Number
3085
3075
3070
3065
3060
3050
3040
I
CC
for
775_VR_CONFIG_06
3.00 GHz
2.66 GHz
2.66 GHz
2.33 GHz
2.40 GHz
2.13 GHz
1.86 GHz
——
75
75
75
75
75
75
75
A
7
V
TT
FSB termination voltage
(DC + AC specifications)
1.14 1.20 1.26 V
8
VTT_OUT_LEFT and
VTT_OUT_RIGHT I
CC
DC Current that may be drawn from
VTT_OUT_LEFT and VTT_OUT_RIGHT per pin
580 mA
9
I
TT
I
CC
for V
TT
supply before V
CC
stable
I
CC
for V
TT
supply after V
CC
stable
——4.5
4.6
A
10
I
CC_VCCPLL
I
CC
for PLL land 130 mA
I
CC_GTLREF
I
CC
for GTLREF 200 μA
PREVIOUS123456789101112NEXT