Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

3000

Part # 3000
Description DUP RCPT PORTABLE OUTLET BX
Category LED
Availability Out of Stock
Qty 0
Qty Price
1 + $0.15000



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

Dual-Core Intel® Xeon® Processor 3000 Series Datasheet 15
Electrical Specifications
2 Electrical Specifications
This chapter describes the electrical characteristics of the processor interfaces and
signals. DC and AC electrical characteristics are provided.
2.1 Power and Ground Lands
The processor has VCC (power), VTT and VSS (ground) inputs for on-chip power
distribution. All power lands must be connected to V
CC
, while all V
SS
lands must be
connected to a system ground plane. The processor V
CC
lands must be supplied the
voltage determined by the Voltage IDentification (VID) lands.
The signals denoted as V
TT
provide termination for the front side bus and power to the
I/O buffers. A separate supply must be implemented for these lands, that meets the
V
TT
specifications outlined in Table 2-4.
2.2 Decoupling Guidelines
Due to its large number of transistors and high internal clock speeds, the processor is
capable of generating large current swings. This may cause voltages on power planes
to sag below their minimum specified values if bulk decoupling is not adequate. Larger
bulk storage (C
BULK
), such as electrolytic or aluminum-polymer capacitors, supply
current during longer lasting changes in current demand by the component, such as
coming out of an idle condition. Similarly, they act as a storage well for current when
entering an idle condition from a running condition. The motherboard must be designed
to ensure that the voltage provided to the processor remains within the specifications
listed in Table 2-4. Failure to do so can result in timing violations or reduced lifetime of
the component.
2.2.1 V
CC
Decoupling
V
CC
regulator solutions need to provide sufficient decoupling capacitance to satisfy the
processor voltage specifications. This includes bulk capacitance with low effective series
resistance (ESR) to keep the voltage rail within specifications during large swings in
load current. In addition, ceramic decoupling capacitors are required to filter high
frequency content generated by the front side bus and processor activity. Consult the
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For
Desktop LGA775 Socket.
2.2.2 V
TT
Decoupling
Decoupling must be provided on the motherboard. Decoupling solutions must be sized
to meet the expected load. To insure compliance with the specifications, various factors
associated with the power delivery solution must be considered including regulator
type, power plane and trace sizing, and component placement. A conservative
decoupling solution would consist of a combination of low ESR bulk capacitors and high
frequency ceramic capacitors.
Electrical Specifications
16 Dual-Core Intel® Xeon® Processor 3000 Series Datasheet
2.2.3 FSB Decoupling
The processor integrates signal termination on the die. In addition, some of the high
frequency capacitance required for the FSB is included on the processor package.
However, additional high frequency capacitance must be added to the motherboard to
properly decouple the return currents from the front side bus. Bulk decoupling must
also be provided by the motherboard for proper [A]GTL+ bus operation.
2.3 Voltage Identification
The Voltage Identification (VID) specification for the processor is defined by the Voltage
Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop
LGA775 Socket. The voltage set by the VID signals is the reference VR output voltage
to be delivered to the processor V
CC
pins (see Chapter 2.6.3 for V
CC
overshoot
specifications). Refer to Table 2-13 for the DC specifications for these signals. Voltages
for each processor frequency is provided in Table 2-4.
Individual processor VID values may be calibrated during manufacturing such that two
devices at the same core speed may have different default VID settings. This is
reflected by the VID Range values provided in Table 2-4. Refer to the Dual-Core Intel
®
Xeon
®
processor 3000 Series Specification Update for further details on specific valid
core frequency and VID values of the processor. Note this differs from the VID
employed by the processor during a power management event (Thermal Monitor 2,
Enhanced Intel SpeedStep
®
Technology, or Extended HALT State).
The processor uses six voltage identification signals, VID[6:1], to support automatic
selection of power supply voltages. Table 2-1 specifies the voltage level corresponding
to the state of VID[6:1]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers
to a low voltage level. If the processor socket is empty (VID[6:1] = 111111), or the
voltage regulation circuit cannot supply the voltage that is requested, it must disable
itself. The Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design
Guidelines For Desktop LGA775 Socket defines VID [7:0], VID7 and VID0 are not used
on the processor; VID0 and VID7 are strapped to V
SS
on the processor package. VID0
and VID7 must be connected to the VR controller for compatibility with future
processors.
The processor provides the ability to operate while transitioning to an adjacent VID and
its associated processor core voltage (V
CC
). This will represent a DC shift in the load
line. It should be noted that a low-to-high or high-to-low voltage state change may
result in as many VID transitions as necessary to reach the target core voltage.
Transitions above the specified VID are not permitted. Table 2-4 includes VID step sizes
and DC shift ranges. Minimum and maximum voltages must be maintained as shown in
Table 2-5 and Figure 2-1 as measured across the VCC_SENSE and VSS_SENSE lands.
The VRM or VRD used must be capable of regulating its output to the value defined by
the new VID. DC specifications for dynamic VID transitions are included in Table 2-4
and Table 2-5. Refer to the Voltage Regulator-Down (VRD) 11.0 Processor Power
Delivery Design Guidelines For Desktop LGA775 Socket for further details.
Dual-Core Intel® Xeon® Processor 3000 Series Datasheet 17
Electrical Specifications
Table 2-1. Voltage Identification Definition
VID6 VID5 VID4 VID3 VID2 VID1 VID (V) VID6 VID5 VID4 VID3 VID2 VID1 VID (V)
1 1 1 1 0 1 0.8500 0 111101.2375
1 1 1 1 0 0 0.8625 0 111011.2500
1 1 1 0 1 1 0.8750 0 111001.2625
1 1 1 0 1 0 0.8875 0 110111.2750
1 1 1 0 0 1 0.9000 0 110101.2875
1 1 1 0 0 0 0.9125 0 110011.3000
1 1 0 1 1 1 0.9250 0 110001.3125
1 1 0 1 1 0 0.9375 0 101111.3250
1 1 0 1 0 1 0.9500 0 101101.3375
1 1 0 1 0 0 0.9625 0 101011.3500
1 1 0 0 1 1 0.9750 0 101001.3625
1 1 0 0 1 0 0.9875 0 100111.3750
1 1 0 0 0 1 1.0000 0 100101.3875
1 1 0 0 0 0 1.0125
0 1 0 0 0 1 1.4000
1 0 1 1 1 1 1.0250 0 100001.4125
1 0 1 1 1 0 1.0375 0 011111.4250
1 0 1 1 0 1 1.0500 0 011101.4375
1 0 1 1 0 0 1.0625 0 011011.4500
1 0 1 0 1 1 1.0750 0 011001.4625
1 0 1 0 1 0 1.0875 0 010111.4750
1 0 1 0 0 1 1.1000 0 010101.4875
1 0 1 0 0 0 1.1125 0 010011.5000
1 0 0 1 1 1 1.1250 0 010001.5125
1 0 0 1 1 0 1.1375 0 001111.5250
1 0 0 1 0 1 1.1500 0 001101.5375
1 0 0 1 0 0 1.1625 0 001011.5500
1 0 0 0 1 1 1.1750 0 001001.5625
1 0 0 0 1 0 1.1875 0 000111.5750
1 0 0 0 0 1 1.2000 0 000101.5875
1 0 0 0 0 0 1.2125 0 000011.6000
0 1 1 1 1 1 1.2250 0 00000 OFF
PREVIOUS1234567891011NEXT