Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

3000

Part # 3000
Description DUP RCPT PORTABLE OUTLET BX
Category LED
Availability Out of Stock
Qty 0
Qty Price
1 + $0.15000



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

Dual-Core Intel® Xeon® Processor 3000 Series Datasheet 81
Thermal Specifications and Design Considerations
With a properly designed and characterized thermal solution, it is anticipated that the
TCC would only be activated for very short periods of time when running the most
power intensive applications. The processor performance impact due to these brief
periods of TCC activation is expected to be so minor that it would be immeasurable. An
under-designed thermal solution that is not able to prevent excessive activation of the
TCC in the anticipated ambient environment may cause a noticeable performance loss,
and in some cases may result in a T
C
that exceeds the specified maximum temperature
and may affect the long-term reliability of the processor. In addition, a thermal solution
that is significantly under-designed may not be capable of cooling the processor even
when the TCC is active continuously. Refer to the Dual-Core Intel
®
Xeon
®
Processor
3000 Series Thermal Design Guidelines for information on designing a thermal solution.
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory
configured and cannot be modified. The Thermal Monitor does not require any
additional hardware, software drivers, or interrupt handling routines.
5.2.2 Thermal Monitor 2
The processor also supports an additional power reduction capability known as Thermal
Monitor 2. This mechanism provides an efficient means for limiting the processor
temperature by reducing the power consumption within the processor.
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the
Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust
its operating frequency (via the bus multiplier) and input voltage (via the VID signals).
This combination of reduced frequency and VID results in a reduction to the processor
power consumption.
A processor enabled for Thermal Monitor 2 includes two operating points, each
consisting of a specific operating frequency and voltage. The first operating point
represents the normal operating condition for the processor. Under this condition, the
core-frequency-to-FSB multiple used by the processor is that contained in the
appropriate MSR and the VID is that specified in Table 2-4. These parameters represent
normal system operation.
The second operating point consists of both a lower operating frequency and voltage.
When the TCC is activated, the processor automatically transitions to the new
frequency. This transition occurs very rapidly (on the order of 5 μs). During the
frequency transition, the processor is unable to service any bus requests, and
consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and
kept pending until the processor resumes operation at the new frequency.
Once the new operating frequency is engaged, the processor will transition to the new
core operating voltage by issuing a new VID code to the voltage regulator. The voltage
regulator must support dynamic VID steps to support Thermal Monitor 2. During the
voltage change, it will be necessary to transition through multiple VID codes to reach
the target operating voltage. Each step will likely be one VID table entry (see
Table 2-4). The processor continues to execute instructions during the voltage
transition. Operation at the lower voltage reduces the power consumption of the
processor.
A small amount of hysteresis has been included to prevent rapid active/inactive
transitions of the TCC when the processor temperature is near its maximum operating
temperature. Once the temperature has dropped below the maximum operating
temperature, and the hysteresis timer has expired, the operating frequency and
Thermal Specifications and Design Considerations
82 Dual-Core Intel® Xeon® Processor 3000 Series Datasheet
voltage transition back to the normal system operating point. Transition of the VID code
will occur first, to insure proper operation once the processor reaches its normal
operating frequency. Refer to Figure 5-5 for an illustration of this ordering.
The PROCHOT# signal is asserted when a high temperature situation is detected,
regardless of whether Thermal Monitor or Thermal Monitor 2 is enabled.
It should be noted that the Thermal Monitor 2 TCC cannot be activated via the on
demand mode. The Thermal Monitor TCC, however, can be activated through the use of
the on demand mode.
5.2.3 On-Demand Mode
The processor provides an auxiliary mechanism that allows system software to force
the processor to reduce its power consumption. This mechanism is referred to as “On-
Demand” mode and is distinct from the Thermal Monitor feature. On-Demand mode is
intended as a means to reduce system level power consumption. Systems using the
processor must not rely on software usage of this mechanism to limit the processor
temperature.
The processor provides an auxiliary mechanism that allows system software to force
the processor to reduce its power consumption. This mechanism is referred to as
“On-Demand” mode and is distinct from the Thermal Monitor and Thermal Monitor 2
features. On-Demand mode is intended as a means to reduce system level power
consumption. Systems must not rely on software usage of this mechanism to limit the
processor temperature. If bit 4 of the IA32_CLOCK_MODULATION MSR is set to a 1, the
processor will immediately reduce its power consumption via modulation (starting and
stopping) of the internal core clock, independent of the processor temperature. When
using On-Demand mode, the duty cycle of the clock modulation is programmable via
bits 3:1 of the same IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty
cycle can be programmed from 12.5% on/ 87.5% off to 87.5% on/ 12.5% off in 12.5%
increments. On-Demand mode may be used in conjunction with the Thermal Monitor;
Figure 5-5. Thermal Monitor 2 Frequency and Voltage Ordering
VID
Frequency
Temperature
T
TM2
f
MAX
f
TM2
VID
VID
TM2
PROCHOT#
Dual-Core Intel® Xeon® Processor 3000 Series Datasheet 83
Thermal Specifications and Design Considerations
however, if the system tries to enable On-Demand mode at the same time the TCC is
engaged, the factory configured duty cycle of the TCC will override the duty cycle
selected by the On-Demand mode.
5.2.4 PROCHOT# Signal
An external signal, PROCHOT# (processor hot), is asserted when the processor core
temperature has reached its maximum operating temperature. If the Thermal Monitor
is enabled (note that the Thermal Monitor must be enabled for the processor to be
operating within specification), the TCC will be active when PROCHOT# is asserted. The
processor can be configured to generate an interrupt upon the assertion or de-
assertion of PROCHOT#.
As an output, PROCHOT# (Processor Hot) will go active when the processor
temperature monitoring sensor detects that one or both cores has reached its
maximum safe operating temperature. This indicates that the processor Thermal
Control Circuit (TCC) has been activated, if enabled. As an input, assertion of
PROCHOT# by the system will activate the TCC, if enabled, for both cores. The TCC will
remain active until the system de-asserts PROCHOT#.
PROCHOT# allows for some protection of various components from over-temperature
situations. The PROCHOT# signal is bi-directional in that it can either signal when the
processor (either core) has reached its maximum operating temperature or be driven
from an external source to activate the TCC. The ability to activate the TCC via
PROCHOT# can provide a means for thermal protection of system components.
PROCHOT# can allow VR thermal designs to target maximum sustained current instead
of maximum current. Systems should still provide proper cooling for the VR, and rely
on PROCHOT# only as a backup in case of system cooling failure. The system thermal
design should allow the power delivery circuitry to operate within its temperature
specification even while the processor is operating at its Thermal Design Power. With a
properly designed and characterized thermal solution, it is anticipated that PROCHOT#
would only be asserted for very short periods of time when running the most power
intensive applications. An under-designed thermal solution that is not able to prevent
excessive assertion of PROCHOT# in the anticipated ambient environment may cause a
noticeable performance loss. Refer to the Voltage Regulator-Down (VRD) 11.0
Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for details on
implementing the bi-directional PROCHOT# feature.
5.2.5 THERMTRIP# Signal
Regardless of whether or not Thermal Monitor or Thermal Monitor 2 is enabled, in the
event of a catastrophic cooling failure, the processor will automatically shut down when
the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in
Table 4-3). At this point, the FSB signal THERMTRIP# will go active and stay active as
described in Table 4-3. THERMTRIP# activation is independent of processor activity and
does not generate any bus cycles.
5.3 Thermal Diode
The processor incorporates an on-die PNP transistor where the base emitter junction is
used as a thermal "diode", with its collector shorted to ground. A thermal sensor
located on the system board may monitor the die temperature of the processor for
thermal management and fan speed control. Table 5-5,Table 5-6, and Table 7 provide
PREVIOUS2021222324252627282930313233NEXT