
External Interrupt Module (IRQ)
IRQ Pin
MC68HC908AZ60A — Rev 2.0 Technical Data
MOTOROLA External Interrupt Module (IRQ) 239
17.5 IRQ Pin
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.
A vector fetch, software clear, or reset clears the IRQ latch.
If the MODE bit is set, the IRQ pin is both falling-edge sensitive and low-
level sensitive. With MODE set, both of the following actions must occur
to clear the IRQ latch:
• Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the latch. Software may
generate the interrupt acknowledge signal by writing a logic 1 to
the ACK bit in the interrupt status and control register (ISCR). The
ACK bit is useful in applications that poll the IRQ
pin and require
software to clear the IRQ latch. Writing to the ACK bit can also
prevent spurious interrupts due to noise. Setting ACK does not
affect subsequent transitions on the IRQ pin. A falling edge on IRQ
that occurs after writing to the ACK bit latches another interrupt
request. If the IRQ mask bit, IMASK, is clear, the CPU loads the
program counter with the vector address at locations $FFFA and
$FFFB.
• Return of the IRQ
pin to logic 1 — As long as the IRQ pin is at logic
0, the IRQ1 latch remains set.
The vector fetch or software clear and the return of the IRQ pin to logic 1
can occur in any order. The interrupt request remains pending as long
as the IRQ
pin is at logic 0. A reset will clear the latch and the MODE
control bit, thereby clearing the interrupt even if the pin stays low.
If the MODE bit is clear, the IRQ pin is falling-edge sensitive only. With
MODE clear, a vector fetch or software clear immediately clears the IRQ
latch.
The IRQF bit in the ISCR register can be used to check for pending
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it
useful in applications where polling is preferred.
Use the BIH or BIL instruction to read the logic level on the IRQ pin.
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by
masking interrupt requests in the interrupt routine.