Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

8A/S6

Part # 8A/S6
Description Incandescent S Light Lamp
Category LAMP
Availability In Stock
Qty 2
Qty Price
1 + $2.43518
Manufacturer Available Qty
General Electric
  • Shipping Freelance Stock: 2
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

Timer Interface Module B (TIMB)
Technical Data MC68HC908AZ60A — Rev 2.0
322 Timer Interface Module B (TIMB) MOTOROLA
The free-running counter contents are transferred to the TIMB channel
register (TBCHxH–TBCHxL, see TIMB Channel Registers on page
340) on each proper signal transition regardless of whether the TIMB
channel flag (CH0F–CH1F in TBSC0–TBSC1 registers) is set or clear.
When the status flag is set, a CPU interrupt is generated if enabled. The
value of the count latched or “captured” is the time of the event. Because
this value is stored in the input capture register 2 bus cycles after the
actual event occurs, user software can respond to this event at a later
time and determine the actual time of the event. However, this must be
done prior to another input capture on the same pin; otherwise, the
previous time value will be lost.
By recording the times for successive edges on an incoming signal,
software can determine the period and/or pulse width of the signal. To
measure a period, two successive edges of the same polarity are
captured. To measure a pulse width, two alternate polarity edges are
captured. Software should track the overflows at the 16-bit module
counter to extend its range.
Another use for the input capture function is to establish a time
reference. In this case, an input capture function is used in conjunction
with an output compare function. For example, to activate an output
signal a specified number of clock cycles after detecting an input event
(edge), use the input capture function to record the time at which the
edge occurred. A number corresponding to the desired delay is added to
this captured value and stored to an output compare register (see TIMB
Channel Registers on page 340). Because both input captures and
output compares are referenced to the same 16-bit modulo counter, the
delay can be controlled to the resolution of the counter independent of
software latencies.
Reset does not affect the contents of the input capture channel register
(TBCHxH–TBCHxL).
Timer Interface Module B (TIMB)
Functional Description
MC68HC908AZ60A — Rev 2.0 Technical Data
MOTOROLA Timer Interface Module B (TIMB) 323
20.4.3 Output Compare
With the output compare function, the TIMB can generate a periodic
pulse with a programmable polarity, duration and frequency. When the
counter reaches the value in the registers of an output compare channel,
the TIMB can set, clear or toggle the channel pin. Output compares can
generate TIMB CPU interrupt requests.
20.4.3.1 Unbuffered Output Compare
Any output compare channel can generate unbuffered output compare
pulses as described in Output Compare on page 323. The pulses are
unbuffered because changing the output compare value requires writing
the new value over the old value currently in the TIMB channel registers.
An unsynchronized write to the TIMB channel registers to change an
output compare value could cause incorrect operation for up to two
counter overflow periods. For example, writing a new value before the
counter reaches the old value but after the counter reaches the new
value prevents any compare during that counter overflow period. Also,
using a TIMB overflow interrupt routine to write a new, smaller output
compare value may cause the compare to be missed. The TIMB may
pass the new value before it is written.
Use the following methods to synchronize unbuffered changes in the
output compare value on channel x:
When changing to a smaller value, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current output compare pulse. The interrupt routine has until
the end of the counter overflow period to write the new value.
When changing to a larger output compare value, enable TIMB
overflow interrupts and write the new value in the TIMB overflow
interrupt routine. The TIMB overflow interrupt occurs at the end of
the current counter overflow period. Writing a larger value in an
output compare interrupt routine (at the end of the current pulse)
could cause two output compares to occur in the same counter
overflow period.
Timer Interface Module B (TIMB)
Technical Data MC68HC908AZ60A — Rev 2.0
324 Timer Interface Module B (TIMB) MOTOROLA
20.4.3.2 Buffered Output Compare
Channels 0 and 1 can be linked to form a buffered output compare
channel whose output appears on the PTF4/TBCH0 pin. The TIMB
channel registers of the linked pair alternately control the output.
Setting the MS0B bit in TIMB channel 0 status and control register
(TBSC0) links channel 0 and channel 1. The output compare value in the
TIMB channel 0 registers initially controls the output on the
PTF4/TBCH0 pin. Writing to the TIMB channel 1 registers enables the
TIMB channel 1 registers to synchronously control the output after the
TIMB overflows. At each subsequent overflow, the TIMB channel
registers (0 or 1) that control the output are the ones written to last.
TBSC0 controls and monitors the buffered output compare function and
TIMB channel 1 status and control register (TBSC1) is unused. While the
MS0B bit is set, the channel 1 pin, PTF5/TBCH1, is available as a
general-purpose I/O pin.
NOTE: In buffered output compare operation, do not write new output compare
values to the currently active channel registers. User software should
track the currently active channel to prevent writing a new value to the
active channel. Writing to the active channel registers is the same as
generating unbuffered output compares.
20.4.4 Pulse Width Modulation (PWM)
By using the toggle-on-overflow feature with an output compare channel,
the TIMB can generate a PWM signal. The value in the TIMB counter
modulo registers determines the period of the PWM signal. The channel
pin toggles when the counter reaches the value in the TIMB counter
modulo registers. The time between overflows is the period of the PWM
signal.
As Figure 20-3 shows, the output compare value in the TIMB channel
registers determines the pulse width of the PWM signal. The time
between overflow and output compare is the pulse width. Program the
TIMB to clear the channel pin on output compare if the state of the PWM
pulse is logic 1. Program the TIMB to set the pin if the state of the PWM
pulse is logic 0.
PREVIOUS101102103104105106107108109110111112113114NEXT