Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

8A/S6

Part # 8A/S6
Description Incandescent S Light Lamp
Category LAMP
Availability In Stock
Qty 2
Qty Price
1 + $2.43518
Manufacturer Available Qty
General Electric
  • Shipping Freelance Stock: 2
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

Serial Peripheral Interface (SPI)
Technical Data MC68HC908AZ60A — Rev 2.0
310 Serial Peripheral Interface (SPI) MOTOROLA
19.14.1 SPI Control Register
The SPI control register:
Enables SPI module interrupt requests
Selects CPU interrupt requests
Configures the SPI module as master or slave
Selects serial clock polarity and phase
Configures the SPSCK, MOSI, and MISO pins as open-drain
outputs
Enables the SPI module
SPRIE — SPI Receiver Interrupt Enable Bit
This read/write bit enables CPU interrupt requests generated by the
SPRF bit. The SPRF bit is set when a byte transfers from the shift
register to the receive data register. Reset clears the SPRIE bit.
1 = SPRF CPU interrupt requests enabled
0 = SPRF CPU interrupt requests disabled
SPMSTR — SPI Master Bit
This read/write bit selects master mode operation or slave mode
operation. Reset sets the SPMSTR bit.
1 = Master mode
0 = Slave mode
Address: $0010
Bit 7654321Bit 0
Read:
SPRIE R SPMSTR CPOL CPHA SPWOM SPE SPTIE
Write:
Reset:00101000
R= Reserved
Figure 19-11. SPI Control Register (SPCR)
Serial Peripheral Interface (SPI)
I/O Registers
MC68HC908AZ60A — Rev 2.0 Technical Data
MOTOROLA Serial Peripheral Interface (SPI) 311
CPOL — Clock Polarity Bit
This read/write bit determines the logic state of the SPSCK pin
between transmissions. (See Figure 19-3 and Figure 19-4.) To
transmit data between SPI modules, the SPI modules must have
identical CPOL bits. Reset clears the CPOL bit.
CPHA — Clock Phase Bit
This read/write bit controls the timing relationship between the serial
clock and SPI data. (See Figure 19-3 and Figure 19-4.) To transmit
data between SPI modules, the SPI modules must have identical
CPHA bits. When CPHA = 0, the SS
pin of the slave SPI module must
be set to logic 1 between bytes. (See Figure 19-10). Reset sets the
CPHA bit.
When CPHA = 0 for a slave, the falling edge of SS
indicates the
beginning of the transmission. This causes the SPI to leave its idle
state and begin driving the MISO pin with the MSB of its data. Once
the transmission begins, no new data is allowed into the shift register
from the data register. Therefore, the slave data register must be
loaded with the desired transmit data before the falling edge of SS
.
Any data written after the falling edge is stored in the data register and
transferred to the shift register at the current transmission.
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the
beginning of the transmission. The same applies when SS is high for
a slave. The MISO pin is held in a high-impedance state, and the
incoming SPSCK is ignored. In certain cases, it may also cause the
MODF flag to be set. (See Mode Fault Error on page 299). A logic 1
on the SS pin does not in any way affect the state of the SPI state
machine.
Serial Peripheral Interface (SPI)
Technical Data MC68HC908AZ60A — Rev 2.0
312 Serial Peripheral Interface (SPI) MOTOROLA
SPWOM — SPI Wired-OR Mode Bit
This read/write bit disables the pullup devices on pins SPSCK, MOSI,
and MISO so that those pins become open-drain outputs.
1 = Wired-OR SPSCK, MOSI, and MISO pins
0 = Normal push-pull SPSCK, MOSI, and MISO pins
SPE — SPI Enable Bit
This read/write bit enables the SPI module. Clearing SPE causes a
partial reset of the SPI (see Resetting the SPI on page 304). Reset
clears the SPE bit.
1 = SPI module enabled
0 = SPI module disabled
SPTIE — SPI Transmit Interrupt Enable Bit
This read/write bit enables CPU interrupt requests generated by the
SPTE bit. SPTE is set when a byte transfers from the transmit data
register to the shift register. Reset clears the SPTIE bit.
1 = SPTE CPU interrupt requests enabled
0 = SPTE CPU interrupt requests disabled
19.14.2 SPI Status and Control Register
The SPI status and control register contains flags to signal the following
conditions:
Receive data register full
Failure to clear SPRF bit before next byte is received (overflow
error)
Inconsistent logic level on SS
pin (mode fault error)
Transmit data register empty
The SPI status and control register also contains bits that perform these
functions:
Enable error interrupts
Enable mode fault error detection
Select master SPI baud rate
PREVIOUS979899100101102103104105106107108109110NEXT