Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

W25Q128FVFIG

Part # W25Q128FVFIG
Description NOR Flash Serial-SPI 3.3V 128Mbit 16M x 8bit 7ns 16-Pin SO
Category IC
Availability Out of Stock
Qty 0
Qty Price
1 + $0.66700



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

W25Q128FV
Publication Release Date: October 01, 2012
- 12 - Revision D
6. FUNCTIONAL DESCRIPTIONS
6.1 SPI / QPI Operations
Figure 3. W25Q128FV Serial Flash Memory Operation Diagram
6.1.1 Standard SPI Instructions
The W25Q128FV is accessed through an SPI compatible bus consisting of four signals: Serial Clock
(CLK), Chip Select (/CS), Serial Data Input (DI) and Serial Data Output (DO). Standard SPI instructions
use the DI input pin to serially write instructions, addresses or data to the device on the rising edge of
CLK. The DO output pin is used to read data or status from the device on the falling edge of CLK.
SPI bus operation Mode 0 (0,0) and 3 (1,1) are supported. The primary difference between Mode 0 and
Mode 3 concerns the normal state of the CLK signal when the SPI bus master is in standby and data is
not being transferred to the Serial Flash. For Mode 0, the CLK signal is normally low on the falling and
rising edges of /CS. For Mode 3, the CLK signal is normally high on the falling and rising edges of /CS.
6.1.2 Dual SPI Instructions
The W25Q128FV supports Dual SPI operation when using instructions such as “Fast Read Dual Output
(3Bh)” and “Fast Read Dual I/O (BBh)”. These instructions allow data to be transferred to or from the
device at two to three times the rate of ordinary Serial Flash devices. The Dual SPI Read instructions are
ideal for quickly downloading code to RAM upon power-up (code-shadowing) or for executing non-speed-
critical code directly from the SPI bus (XIP). When using Dual SPI instructions, the DI and DO pins
become bidirectional I/O pins: IO0 and IO1.
W25Q128FV
- 13 -
6.1.3 Quad SPI Instructions
The W25Q128FV supports Quad SPI operation when using instructions such as “Fast Read Quad Output
(6Bh)”, “Fast Read Quad I/O (EBh)”, “Word Read Quad I/O (E7h)” and “Octal Word Read Quad I/O
(E3h)”. These instructions allow data to be transferred to or from the device four to six times the rate of
ordinary Serial Flash. The Quad Read instructions offer a significant improvement in continuous and
random access transfer rates allowing fast code-shadowing to RAM or execution directly from the SPI bus
(XIP). When using Quad SPI instructions the DI and DO pins become bidirectional IO0 and IO1, and the
/WP and /HOLD pins become IO2 and IO3 respectively. Quad SPI instructions require the non-volatile
Quad Enable bit (QE) in Status Register-2 to be set.
6.1.4 QPI Instructions
The W25Q128FV supports Quad Peripheral Interface (QPI) operations only when the device is switched
from Standard/Dual/Quad SPI mode to QPI mode using the “Enter QPI (38h)” instruction. The typical SPI
protocol requires that the byte-long instruction code being shifted into the device only via DI pin in eight
serial clocks. The QPI mode utilizes all four IO pins to input the instruction code, thus only two serial
clocks are required. This can significantly reduce the SPI instruction overhead and improve system
performance in an XIP environment. Standard/Dual/Quad SPI mode and QPI mode are exclusive. Only
one mode can be active at any given time. “Enter QPI (38h)” and “Exit QPI (FFh)” instructions are used to
switch between these two modes. Upon power-up or after a software reset using “Reset (99h)” instruction,
the default state of the device is Standard/Dual/Quad SPI mode. To enable QPI mode, the non-volatile
Quad Enable bit (QE) in Status Register-2 is required to be set. When using QPI instructions, the DI and
DO pins become bidirectional IO0 and IO1, and the /WP and /HOLD pins become IO2 and IO3
respectively. See Figure 3 for the device operation modes.
6.1.5 Hold Function
For Standard SPI and Dual SPI operations, the /HOLD signal allows the W25Q128FV operation to be
paused while it is actively selected (when /CS is low). The /HOLD function may be useful in cases where
the SPI data and clock signals are shared with other devices. For example, consider if the page buffer
was only partially written when a priority interrupt requires use of the SPI bus. In this case the /HOLD
function can save the state of the instruction and the data in the buffer so programming can resume where
it left off once the bus is available again. The /HOLD function is only available for standard SPI and Dual
SPI operation, not during Quad SPI or QPI. The Quad Enable Bit QE in Status Register-2 is used to
determine if the pin is used as /HOLD pin or data I/O pin. When QE=0 (factory default), the pin is /HOLD,
when QE=1, the pin will become an I/O pin, /HOLD function is no longer available.
To initiate a /HOLD condition, the device must be selected with /CS low. A /HOLD condition will activate on
the falling edge of the /HOLD signal if the CLK signal is already low. If the CLK is not already low the
/HOLD condition will activate after the next falling edge of CLK. The /HOLD condition will terminate on the
rising edge of the /HOLD signal if the CLK signal is already low. If the CLK is not already low the /HOLD
condition will terminate after the next falling edge of CLK. During a /HOLD condition, the Serial Data
Output (DO) is high impedance, and Serial Data Input (DI) and Serial Clock (CLK) are ignored. The Chip
Select (/CS) signal should be kept active (low) for the full duration of the /HOLD operation to avoid
resetting the internal logic state of the device.
W25Q128FV
Publication Release Date: October 01, 2012
- 14 - Revision D
6.1.6 Software Reset & Hardware /RESET pin
The W25Q128FV can be reset to the initial power-on state by a software Reset sequence, either in SPI
mode or QPI mode. This sequence must include two consecutive commands: Enable Reset (66h) &
Reset (99h). If the command sequence is successfully accepted, the device will take approximately 30uS
(
tRST) to reset. No command will be accepted during the reset period.
For the WSON-8 and TFBGA package types, W25Q128FV can also be configured to utilize a hardware
/RESET pin. The HOLD/RST bit in the Status Register-3 is the configuration bit for /HOLD pin function or
RESET pin function. When HOLD/RST=0 (factory default), the pin acts as a /HOLD pin as described
above; when HOLD/RST=1, the pin acts as a /RESET pin. Drive the /RESET pin low for a minimum period
of ~1us (tRESET*) will reset the device to its initial power-on state. Any on-going Program/Erase operation
will be interrupted and data corruption may happen. While /RESET is low, the device will not accept any
command input.
If QE bit is set to 1, the /HOLD or /RESET function will be disabled, the pin will become one of the four
data I/O pins.
For the SOIC-16 package, W25Q128FV provides a dedicated /RESET pin in addition to the /HOLD (IO
3
)
pin as illustrated in Figure 1b. Drive the /RESET pin low for a minimum period of ~1us (tRESET*) will reset
the device to its initial power-on state. The HOLD/RST bit or QE bit in the Status Register will not affect
the function of this dedicated /RESET pin.
Hardware /RESET pin has the highest priority among all the input signals. Drive /RESET low for a
minimum period of ~1us (tRESET*) will interrupt any on-going external/internal operations, regardless the
status of other SPI signals (/CS, CLK, IOs, /WP and/or /HOLD).
Note: While a faster /RESET pulse (as short as a few hundred nanoseconds) will often reset the device, a
1us minimum is recommended to ensure reliable operation.
PREVIOUS1234567891011NEXT