DS311 (v2.3) November 19, 2008 www.xilinx.com 1
Product Specification
© 2004–2008 Xilinx, Inc. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
Features
• Optimized for 1.8V systems
- As fast as 4.6 ns pin-to-pin logic delays
- As low as 15 μA quiescent current
• Industry’s best 0.18 micron CMOS CPLD
- Optimized architecture for effective logic synthesis
- Multi-voltage I/O operation — 1.5V to 3.3V
• Available in multiple package options
- 44-pin VQFP with 33 user I/Os
- 48-land QFN with 37 user I/Os
- 56-ball CP BGA with 45 user I/Os
- 100-pin VQFP with 64 user I/Os
- Pb-free available for all packages
• Advanced system features
- Fastest in system programming
· 1.8V ISP using IEEE 1532 (JTAG) interface
- IEEE1149.1 JTAG Boundary Scan Test
- Optional Schmitt-trigger input (per pin)
- Two separate I/O banks
- RealDigital 100% CMOS product term generation
- Flexible clocking modes
· Optional DualEDGE triggered registers
- Global signal options with macrocell control
· Multiple global clocks with phase selection per
macrocell
· Multiple global output enables
· Global set/reset
- Efficient control term clocks, output enables, and
set/resets for each macrocell and shared across
function blocks
- Advanced design security
- Optional bus-hold, 3-state, or weak pullup on
selected I/O pins
- Open-drain output option for Wired-OR and LED
drive
- Optional configurable grounds on unused I/Os
- Mixed I/O voltages compatible with 1.5V, 1.8V,
2.5V, and 3.3V logic levels
- PLA architecture
· Superior pinout retention
· 100% product term routability across function
block
- Hot pluggable
Refer to the CoolRunner™-II family data sheet for architec-
ture description.
Description
The CoolRunner-II 64-macrocell device is designed for both
high performance and low power applications. This lends
power savings to high-end communication equipment and
high speed to battery operated devices. Due to the low
power stand-by and dynamic operation, overall system reli-
ability is improved.
This device consists of four Function Blocks inter-connected
by a low power Advanced Interconnect Matrix (AIM). The
AIM feeds 40 true and complement inputs to each Function
Block. The Function Blocks consist of a 40 by 56 P-term
PLA and 16 macrocells which contain numerous configura-
tion bits that allow for combinational or registered modes of
operation.
Additionally, these registers can be globally reset or preset
and configured as a D or T flip-flop or as a D latch. There
are also multiple clock signals, both global and local product
term types, configured on a per macrocell basis. Output pin
configurations include slew rate limit, bus hold, pull-up,
open drain, and programmable grounds. A Schmitt trigger
input is available on a per input pin basis. In addition to stor-
ing macrocell output states, the macrocell registers can be
configured as "direct input" registers to store signals directly
from input pins.
Clocking is available on a global or Function Block basis.
Three global clocks are available for all Function Blocks as a
synchronous clock source. Macrocell registers can be indi-
vidually configured to power up to the zero or one state. A
global set/reset control line is also available to asynchro-
nously set or reset selected registers during operation.
Additional local clock, synchronous clock-enable, asynchro-
nous set/reset, and output enable signals can be formed
using product terms on a per-macrocell or per-Function
Block basis.
A DualEDGE flip-flop feature is also available on a per mac-
rocell basis. This feature allows high performance synchro-
nous operation based on lower frequency clocking to help
reduce the total power consumption of the device.
The CoolRunner-II 64-macrocell CPLD is I/O compatible
with standard LVTTL and LVCMOS18, LVCMOS25, and
LVCMOS33 (see Table 1 ). This device is also 1.5V I/O com-
patible with the use of Schmitt-trigger inputs.
Another feature that eases voltage translation is I/O bank-
ing. Two I/O banks are available on the CoolRunner-II 64A
macrocell device that permit easy interfacing to 3.3V, 2.5V,
1.8V, and 1.5V devices.
0
XC2C64A CoolRunner-II CPLD
DS311 (v2.3) November 19, 2008
00
Product Specification