Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

TLC277IP

Part # TLC277IP
Description LINCMOS DUAL OP AMPS/LINEAR -Rail/Tube
Category IC
Availability In Stock
Qty 39
Qty Price
1 - 8 $2.78450
9 - 16 $2.21494
17 - 24 $2.08838
25 - 32 $1.94071
33 + $1.72977
Manufacturer Available Qty
Texas Instruments
Date Code: 8918
  • Shipping Freelance Stock: 39
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

TLC272, TLC272A, TLC272B, TLC272Y, TLC277
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
single-supply versus split-supply test circuits
Because the TLC272 and TLC277 are optimized for single-supply operation, circuit configurations used for the
various tests often present some inconvenience since the input signal, in many cases, must be offset from
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to
the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either
circuit gives the same result.
V
DD
V
DD+
+
C
L
R
L
V
O
V
I
V
I
V
O
R
L
C
L
V
DD
+
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 1. Unity-Gain Amplifier
V
O
2 k
20 20
V
DD
20
2 k
V
O
20
1/2 V
DD
+
V
DD+
+
V
DD
(b) SPLIT SUPPLY
(a) SINGLE SUPPLY
Figure 2. Noise-Test Circuit
V
DD
V
DD+
+
10 k
V
O
100
C
L
V
I
V
I
1/2 V
DD
C
L
100
V
O
10 k
+
V
DD
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 3. Gain-of-100 Inverting Amplifier
TLC272, TLC272A, TLC272B, TLC272Y, TLC277
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLC272 and TLC277 operational amplifiers, attempts to measure
the input bias current can result in erroneous readings. The bias current at normal room ambient temperature
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are
offered to avoid erroneous measurements:
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated
by subtracting the open-socket leakage readings from the readings obtained with a device in the test
socket.
One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage
drop across the series resistor is measured and the bias current is calculated). This method requires that a
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not
feasible using this method.
85
14
V = V
IC
Figure 4. Isolation Metal Around Device Inputs
(JG and P packages)
low-level output voltage
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise
results in the device low-level output being dependent on both the common-mode input voltage level as well
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted
in the electrical specifications, these two conditions should be observed. If conditions other than these are to
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This
parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these
measurements be performed at temperatures above freezing to minimize error.
TLC272, TLC272A, TLC272B, TLC272Y, TLC277
LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS091B – OCTOBER 1987 – REVISED AUGUST 1994
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
full-power response
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is
generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal
input signal until the maximum frequency is found above which the output contains significant distortion. The
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full
peak-to-peak output swing cannot be maintained.
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum
peak-to-peak output is reached.
(d) f > B
OM
(c) f = B
OM
(b) B
OM
> f > 1 kHz(a) f = 1 kHz
Figure 5. Full-Power-Response Output Signal
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
PREVIOUS123456789101112NEXT