Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

OP213FS

Part # OP213FS
Description OP AMP DUAL GP 18V/36V 8SOICN - Rail/Tube
Category IC
Availability Out of Stock
Qty 0
Qty Price
1 + $5.43820



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

OP113/OP213/OP413
REV. C –13–
140
100
0
1k 1M100k10k100
120
60
80
20
40
FREQUENCY – Hz
POWER SUPPLY REJECTION – dB
T
A
= +258C
V
S
= 615V
+PSRR
–PSRR
Figure 32. Power Supply Rejection vs. Frequency
@
±
15 V
6
3
0
10k 10M1M100k1k
2
1
4
5
FREQUENCY – Hz
MAXIMUM OUTPUT SWING – Volts
V
S
= +5V
R
L
= 2kV
T
A
= +258C
A
VCL
= +1
Figure 33. Maximum Output Swing vs. Frequency @ +5 V
50
0
500
15
5
100
10
0
30
20
25
35
40
45
400300200
LOAD CAPACITANCE – pF
OVERSHOOT – %
V
S
= +5V
R
L
= 2kV
V
IN
= 100mV p-p
T
A
= +258C
A
VCL
= +1
NEGATIVE
EDGE
POSITIVE
EDGE
Figure 34. Small Signal Overshoot vs. Load Capacitance
@ +5 V
40
20
0
1k 1M100k10k100
10
30
FREQUENCY – Hz
IMPEDANCE – V
T
A
= +258C
V
S
= 615V
A
V
= +100
A
V
= +10
A
V
= +1
Figure 35. Closed-Loop Output Impedance vs. Frequency
@
±
15 V
30
15
0
10k 10M1M100k1k
10
5
20
25
FREQUENCY – Hz
MAXIMUM OUTPUT SWING – Volts
V
S
= 615V
R
L
= 2kV
T
A
= +258C
A
VOL
= +1
Figure 36. Maximum Output Swing vs. Frequency
@
±
15 V
20
0
500
6
2
100
4
0
12
8
10
14
16
18
400300200
LOAD CAPACITANCE – pF
OVERSHOOT – %
V
S
= 615V
R
L
= 2kV
V
IN
= 100mV p-p
T
A
= +258C
A
VCL
= +1
POSITIVE
EDGE
NEGATIVE
EDGE
Figure 37. Small Signal Overshoot vs. Load Capacitance
@
±
15 V
OP113/OP213/OP413
–14–
REV. C
2.0
0
125
1.5
0.5
–50
1.0
75 10050250–25
TEMPERATURE – 8C
SLEW RATE – V/ms
–75
V
S
= +5, 0
+0.5V
V
OUT
+4.0V
+SLEW RATE
–SLEW RATE
Figure 38. Slew Rate vs. Temperature @ +5 V
(0.5 V
V
OUT
+4.0 V)
10
100
0%
90
20mV
1s
Figure 39. Input Voltage Noise @
±
15 V
(20 nV/div)
t
OUT
A
V
= 100
909V
100V
0.1 – 10Hz
A
V
= 1000
Figure 40. Noise Test Diagram
2.0
0
125
1.5
0.5
–50
1.0
75 10050250–25
TEMPERATURE – 8C
SLEW RATE – V/ms
–75
V
S
= 615V
V
OUT
= 610V
+SLEW RATE
–SLEW RATE
Figure 41. Slew Rate vs. Temperature @
±
15 V
(–10 V
V
OUT
+10.0 V)
0%
100
20mV
1s
90
10
Figure 42. Input Voltage Noise @ +5 V
(20 nV/ div)
5
0
125
3
1
–50
2
4
100755025
0–25
TEMPERATURE – 8C
SUPPLY CURRENT – mA
–75
V
S
= 618V
V
S
= 615V
V
S
= +5.0V
Figure 43. Supply Current vs. Temperature
OP113/OP213/OP413
REV. C –15–
9V 9V
+IN
–IN
OUT
Figure 44. OP213 Simplified Schematic
*OP113 Family SPICE Macro-Model
*
*Copyright 1992 by Analog Devices, Inc.
*
*Node Assignments
*
* Noninverting Input
* Inverting Input
* Positive Supply
* Negative Supply
* Output
*
.SUBCKT OP113 Family 3 2746
*
* INPUT STAGE
R3 4 19 1.5E3
R4 4 20 1.5E3
C1 19 20 5.31E–12
I1 7 18 106E–6
IOS 2 3 25E–09
EOS 12 5 POLY(1) 51 4 25E–06 1
Q1 19 3 18 PNP1
Q2 20 12 18 PNP1
CIN 3 2 3E–12
D1 3 1 DY
D2 2 1 DY
EN 5 2 22 0 1
GN1 0 2 25 0 1E–5
GN2 0 3 28 0 1E–5
*
* VOLTAGE NOISE SOURCE WITH FLICKER NOISE
DN1 21 22 DEN
DN2 22 23 DEN
VN1 21 0 DC 2
VN2 0 23 DC 2
*
* CURRENT NOISE SOURCE WITH FLICKER NOISE
DN3 24 25 DIN
DN4 25 26 DIN
VN3 24 0 DC 2
VN4 0 26 DC 2
*
* SECOND CURRENT NOISE SOURCE
DN5 27 28 DIN
DN6 28 29 DIN
VN5 27 0 DC 2
VN6 0 29 DC 2
*
* GAIN STAGE & DOMINANT POLE AT .2000E+01 HZ
G2 34 36 19 20 2.65E–04
R7 34 36 39E+06
V3 35 4 DC 6
D4 36 35 DX
VB2 34 4 1.6
*
* SUPPLY/2 GENERATOR
ISY 7 4 0.2E–3
R10 7 60 40E+3
R11 60 4 40E+3
C3 60 0 1E–9
*
* CMRR STAGE & POLE AT 6 kHZ
ECM 50 4 POLY(2) 3 60 2 60 0 1.6 0 1.6
CCM 50 51 26.5E–12
RCM1 50 51 1E6
RCM2 51 4 1
*
*
OUTPUT STAGE
R12 37 36 1E3
R13 38 36 500
C4 37 6 20E–12
C5 38 39 20E–12
M1 39 36 4 4 MN L=9E–6 W=1000E–6 AD=15E–9 AS=15E–9
M2 45 36 4 4 MN L=9E–6 W=1000E–6 AD=15E–9 AS=15E–9
D5 39 47 DX
D6 47 45 DX
Q3 39 40 41 QPA 8
VB 7 40 DC 0.861
R14 7 41 375
Q4 41 7 43 QNA 1
R17 7 43 15
Q5 43 39 6 QNA 20
Q6 46 45 6 QPA 20
R18 46 4 15
Q7 36 46 4 QNA 1
M3 6 36 4 4 MN L = 9E–6 W=2000E–6 AD=30E–9 AS=30E–9
*
* NONLINEAR MODELS USED
*
.MODEL DX D (IS=1E–15)
.MODEL DY D (IS=1E–15 BV=7)
.MODEL PNP1 PNP (BF=220)
.MODEL DEN D(IS=1E–12 RS=1016 KF=3.278E–15 AF=1)
.MODEL DIN D(IS=1E–12 RS=100019 KF=4.173E–15 AF=1)
.MODEL QNA NPN(IS=1.19E–16 BF=253 VAF=193 VAR=15 RB=2.0E3
+ IRB=7.73E–6 RBM=132.8 RE=4 RC=209 CJE=2.1E–13 VJE=0.573
+ MJE=0.364 CJC=1.64E–13 VJC=0.534 MJC=0.5 CJS=1.37E–12
+ VJS=0.59 MJS=0.5 TF=0.43E–9 PTF=30)
.MODEL QPA PNP(IS=5.21E–17 BF=131 VAF=62 VAR= 15 RB=1.52E3
+ IRB=1.67E–5 RBM=368.5 RE=6.31 RC=354.4 CJE=1.1E–13
+ VJE=0.745 MJE=0.33 CJC=2.37E–13 VJC=0.762 MJC=0.4
+ CJS=7.11E–13 VJS=0.45 MJS=0.412 TF=1.0E–9 PTF=30)
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3 TOX=8.5E–8
+ LD=1.48E–6 WD=1E–6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5
+ XJ=1.75E–6 KAPPA=0.8 ETA=0.066 THETA=0.01 TPG=1 CJ=2.9E–4
+ PB=0.837 MJ=0.407 CJSW=0.5E–9 MJSW=0.33)
*
.ENDS OP113 Family
PREVIOUS123456NEXT