Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

IMX9T110

Part # IMX9T110
Description COMPLEX BIPOLAR TRANSISTOR
Category IC
Availability In Stock
Qty 1
Qty Price
1 + $0.07456
Manufacturer Available Qty
ROHM
  • Shipping Freelance Stock: 1
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

IMX9
Transistors
General purpose transistor
(isolated dual transistors)
IMX9
z
zz
zFeatures
1) Two 2SD2114K chips in a SMT package.
2) Mounting possible with SMT3 automatic mounting
machine.
3) Transistor elements are independent, eliminating
interference.
4) Mounting cost and area can be cut in half.
z
zz
zStructure
Epitaxial planar type
NPN silicon transistor
The following characteristics apply to both Tr
1
and Tr
2
.
z
zz
zExternal dimensions (Units : mm)
ROHM : SMT6
EIAJ : SC-74
Abbreviated symbol: X9
(1)
(2)
(3)
0.3
+0.1
0.05
1.6
2.8±0.2
+0.2
0.1
(6)
(5)
(4)
0.95 0.95
1.9±0.2
2.9±0.2
1.1
+0.2
0.8±0.1
0.1
0~0.1
0.3~0.6
0.15
0.06
+0.1
All terminals have same dimensions
z
zz
zAbsolute maximum ratings (Ta = 25°C) z
zz
zEquivalent circuit
Parameter Symbol Limits Unit
V
CBO
25 V
V
CEO
20 V
V
EBO
12 V
I
C
500 mA
Tj 150
°C
Tstg
55~+150 °C
Pd 300(TOTAL) mW
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Junction temperature
Storage temperature
Power dissipation
200mW per element must not be exceeded.
Tr
2
Tr
1
(4) (5) (6)
(3) (2) (1)
z
zz
zElectrical characteristics (Ta = 25°C)
Parameter
Symbol
BV
CBO
BVCEO
BVEBO
ICBO
IEBO
hFE
VCE(sat)
Min.
25
20
12
560
0.18
0.5
0.5
2700
0.4
V
I
C=10µA
I
C=1mA
I
E=10µA
V
CB=20V
V
EB=10V
V
CE=3V, IC=10mA
I
C/IB=500mA/20mA
V
V
µA
µA
V
Typ. Max. Unit Conditions
f
T
Ron
Cob
350
0.8
8
V
CE=10V, IE=−50mA, f=100MHz
I
B=1mA, Vi=100mVrms, f=1kHz
V
CB=10V, IE=0A, f=1MHz
MHz
pF
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
DC current transfer ratio
Transition frequency
Output capacitance
Output On-resistance
Collector-emitter saturation voltage
IMX9
Transistors
z
zz
zPackaging specifications
IMX9
Part No.
T110
3000
Packaging type
Code
Basic ordering unit (pieces)
Taping
z
zz
zElectrical characteristic curves
0
0.4
0.8
1.2
1.6
2.0
0 0.1 0.2 0.3 0.4 0.5
Ta=25°C
0.2µA
0.4µA
0.6µA
0.8µA
1.0µA
1.2µA
1.4µA
1.6µA
I
B
=0
1.8µA
2.0µA
COLLECTOR CURRENT : I
C (mA)
COLLECTOR TO EMITTER VOLTAGE : V
CE (V)
Fig.1 Grounded emitter output
characteristics(Ι)
0
200
400
600
800
1000
0246810
Ta=25°C
Measured using
pulse current.
0.2mA
0.4mA
0.6mA
0.8mA
1.0mA
1.2mA
1.4mA
1.6mA
1.8mA 2.0mA
I
B
=0mA
COLLECTOR CURRENT : I
C
(mA)
COLLECTOR TO EMITTER VOLTAGE : V
CE
(V)
Fig.2 Grounded emitter output
characteristics (ΙΙ)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1
2
5
10
20
50
100
200
500
1000
COLLECTOR CURRENT : IC
(mA)
BASE TO EMITTER VOLTAGE : V
BE
(V)
Fig.3 Grounded emitter propagation
characteristics
V
CE
=3V
Measured using
pulse current.
25°C
25°C
Ta=100°C
1 2 5 10 20 50 100 200 5001000
10
20
50
100
200
500
1000
2000
5000
10000
Ta=25°C
Measured using
pulse current.
DC CURRENT GAIN : h
FE
COLLECTOR CURRENT : I
C
(mA)
Fig.4 DC current gain vs. collector
current (Ι)
3V
V
CE
=5V
1V
1 2 5 10 20 50 100 200 500 1000
10000
5000
2000
1000
500
200
100
50
20
10
V
CE
=
3V
Measured using
pulse current.
DC CURRENT GAIN : h
FE
COLLECTOR CURRENT : I
C
(mA)
Fig.5 DC current gain vs.
collector current (ΙΙ)
25°C
25°C
Ta=100°C
1
2
2000
1000
200
500
100
20
50
10
5
2 5 10 20 50 100 200 500 1000
Ta=25°C
Measured using
pulse current.
10
25
50
IC/IB
=
100
COLLECTOR SATURATION VOLTAGE : V
CE(sat)
(mV)
COLLECTOR CURRENT : IC
(mA)
Fig.6 Collector-emitter saturation
voltage vs. collector current (Ι)
IMX9
Transistors
COLLECTOR SATURATION VOLTAGE : V
CE(sat) (mV)
COLLECTOR CURRENT : I
C (mA)
Fig.7 Collector-emitter saturation
voltage vs. collector current (ΙΙ)
1
2
2000
1000
200
500
100
20
50
10
5
2 5 10 20 50 100 200 5001000
I
C
/
I
B
=
25
Measured using
pulse current.
Ta=100°C
25°C
25°C
BASE SATURATION VOLTAGE : V
BE(sat)
(mV)
COLLECTOR CURRENT : I
C
(mA)
Fig.8 Base-emitter saturation
voltage vs. collector current (Ι)
1 2 5 10 20 50 100 200 500 1000
10000
5000
2000
1000
500
200
100
50
20
10
Ta=25°C
Pulsed
I
C
/I
B
=10
25
50
100
1 2 5 10 20 50 100 200 5001000
10000
5000
2000
1000
500
200
100
50
20
10
BASE SATURATION VOLTAGE : VBE(sat)
(mV)
COLLECTOR CURRENT : IC
(mA)
Fig.9 Base-emitter saturation voltage
vs. collector current (ΙΙ)
Measured using
pulse current.
l
C/lB=10
25°C
100°C
Ta=−25°C
EMITTER CURRENT : IE
(mA)
TRANSITION FREQUENCY : fT
(MHz)
Fig.10 Gain bandwidth product vs.
emitter current
1 2 5 10 20 50100200 5001000
10000
5000
2000
500
200
1000
100
20
50
10
Ta=25°C
VCE
=10V
Measured using
pulse current.
0.1 0.2 0.5 1 2 5 10 20 50 100
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
COLLECTOR TO BASE VOLTAGE : V
CB
(V)
Fig.11 Collector output capacitance
vs. collector-base voltage
100
200
500
1000
10
20
50
2
5
1
Ta=25°C
f=1MHz
I
E
=0A
0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10
ON RESISTANCE : Ron ()
BASE CURRENT : I
B
(mA)
Fig.12 Output-on resistance vs.
base current
0.1
0.2
0.5
1
2
5
10
20
50
100
Ta=25°C
f=1kHz
Vi=100mV(
rms)
R
L
=1k
z
zz
zRon measurement circuit
Ron= ×R
L
V
0
Vi-V
0
R
L
=1k
I
B
Output
V
0
Input
Vi
1kHz
100mV(rms)
V
12NEXT