Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

EPM3032ATC44-10N

Part # EPM3032ATC44-10N
Description CPLD MAX 3000A Family 600 Gates 32 Macro Cells 103.1MHz CM
Category IC
Availability Out of Stock
Qty 0
Qty Price
1 + $2.44490



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

4 Altera Corporation
MAX 3000A Programmable Logic Device Family Data Sheet
MAX 3000A devices contain 32 to 512 macrocells, combined into groups
of 16 macrocells called logic array blocks (LABs). Each macrocell has a
programmable–AND/fixed–OR array and a configurable register with
independently programmable clock, clock enable, clear, and preset
functions. To build complex logic functions, each macrocell can be
supplemented with shareable expander and high–speed parallel
expander product terms to provide up to 32 product terms per macrocell.
MAX 3000A devices provide programmable speed/power optimization.
Speed–critical portions of a design can run at high speed/full power,
while the remaining portions run at reduced speed/low power. This
speed/power optimization feature enables the designer to configure one
or more macrocells to operate at 50% or lower power while adding only a
nominal timing delay. MAX 3000A devices also provide an option that
reduces the slew rate of the output buffers, minimizing noise transients
when non–speed–critical signals are switching. The output drivers of all
MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are
2.5–V, 3.3–V, and 5.0-V tolerant, allowing MAX 3000A devices to be used
in mixed–voltage systems.
MAX 3000A devices are supported by Altera development systems,
which are integrated packages that offer schematic, text—including
VHDL, Verilog HDL, and the Altera Hardware Description Language
(AHDL)—and waveform design entry, compilation and logic synthesis,
simulation and timing analysis, and device programming. The software
provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other
interfaces for additional design entry and simulation support from other
industry–standard PC– and UNIX–workstation–based EDA tools. The
software runs on Windows–based PCs, as well as Sun SPARCstation, and
HP 9000 Series 700/800 workstations.
f
For more information on development tools, see the MAX+PLUS II
Programmable Logic Development System & Software Data Sheet and the
Quartus Programmable Logic Development System & Software Data Sheet.
Functional
Description
The MAX 3000A architecture includes the following elements:
Logic array blocks (LABs)
Macrocells
Expander product terms (shareable and parallel)
Programmable interconnect array (PIA)
I/O control blocks
The MAX 3000A architecture includes four dedicated inputs that can be
used as general–purpose inputs or as high–speed, global control signals
(clock, clear, and two output enable signals) for each macrocell and I/O
pin. Figure 1 shows the architecture of MAX 3000A devices.
Altera Corporation 5
MAX 3000A Programmable Logic Device Family Data Sheet
Figure 1. MAX 3000A Device Block Diagram
Note:
(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have
10 output enables.
Logic Array Blocks
The MAX 3000A device architecture is based on the linking of
high–performance LABs. LABs consist of 16–macrocell arrays, as shown
in Figure 1. Multiple LABs are linked together via the PIA, a global bus
that is fed by all dedicated input pins, I/O pins, and macrocells.
Each LAB is fed by the following signals:
36 signals from the PIA that are used for general logic inputs
Global controls that are used for secondary register functions
6 or 10
6 or 10
INPUT/GCLRn
6 or 10 Output Enables
(1)
6 or 10 Output Enables
(1)
16
36 36
16
I/O
Control
Block
LAB C
LAB D
I/O
Control
Block
6 or 10
16
36 36
16
I/O
Control
Block
LAB A
Macrocells
1 to 16
LAB B
I/O
Control
Block
6 or 10
PIA
INPUT/GCLK1
INPUT/OE2/GCLK2
INPUT/OE1
2 to 16 I/O
2 to 16 I/O
2 to 16 I/O
2 to 16 I/O
2 to
16
2 to
16
2 to
16
2 to
16
2 to 16
2 to 16
2 to 16
2 to 16
Macrocells
17 to 32
Macrocells
33 to 48
Macrocells
49 to 64
6 Altera Corporation
MAX 3000A Programmable Logic Device Family Data Sheet
Macrocells
MAX 3000A macrocells can be individually configured for either
sequential or combinatorial logic operation. Macrocells consist of three
functional blocks: logic array, product–term select matrix, and
programmable register. Figure 2 shows a MAX 3000A macrocell.
Figure 2. MAX 3000A Macrocell
Combinatorial logic is implemented in the logic array, which provides
five product terms per macrocell. The product–term select matrix
allocates these product terms for use as either primary logic inputs (to the
OR and XOR gates) to implement combinatorial functions, or as secondary
inputs to the macrocell’s register preset, clock, and clock enable control
functions.
Two kinds of expander product terms (“expanders”) are available to
supplement macrocell logic resources:
Shareable expanders, which are inverted product terms that are fed
back into the logic array
Parallel expanders, which are product terms borrowed from adjacent
macrocells
The Altera development system automatically optimizes product–term
allocation according to the logic requirements of the design.
P
r
od
uct
-
T
e
rm
S
elect
M
a
tri
x
36 Si
g
nal
s
fr
o
m PI
A
16 Ex
p
ander
Product Term
LAB Local Arra
y
P
arallel Lo
g
ic
Ex
p
ander
s
(
from other
macrocells
)
Shared Lo
g
ic
Ex
p
ander
s
Clear
Select
Global
Clear
Global
Clocks
Clock/
Enable
Select
2
PRN
C
LR
N
Q
ENA
Re
g
ister
B
y
pas
s
To I/
O
C
ontrol
Bl
o
c
k
T
o
PI
A
Pro
g
rammable
Re
g
iste
r
VCC
D/T
PREVIOUS12345678NEXT