Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

C8051F041-GQ

Part # C8051F041-GQ
Description MCU 8BIT CISC 64KB FLASH 3V 64TQFP - Trays
Category IC
Availability In Stock
Qty 2
Qty Price
1 + $20.05559
Manufacturer Available Qty
SILICON LABORATORIES
Date Code: 0903
  • Shipping Freelance Stock: 2
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

C8051F040/1/2/3/4/5/6/7
Rev. 1.5 259
20.3. SPI0 Slave Mode Operation
When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are
shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK sig-
nal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift reg-
ister, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the
receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the
master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-
buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit
buffer will immediately be transferred into the shift register. When the shift register already contains data,
the SPI will wait until the byte is transferred before loading it with the transmit buffer’s contents.
When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire
slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the
NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0,
and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS sig-
nal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer.
Figure 20.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master
device.
3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not
used in this mode, and does not get mapped to an external port pin through the crossbar. Since there is no
way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present
on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit
counter that determines when a full byte has been received. The bit counter can only be reset by disabling
and re-enabling SPI0 with the SPIEN bit. Figure 20.3 shows a connection diagram between a slave device
in 3-wire slave mode and a master device.
20.4. SPI0 Interrupt Sources
When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to
logic 1:
Note: All of the following interrupt bits must be cleared by software.
1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logi
c 1 at the end of each byte transfer. This
flag can occur in all SPI0 modes.
2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic
1 if a write to SPI0DAT is attempted
when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the
write to SPI0DAT will be ignored, and the transmit buffer will not be written.This flag can occur
in all SPI0 modes.
3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master,
a
nd for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the
MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master
device to access the bus.
4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is se
t to logic 1 when configured as a slave,
and a transfer is completed and the receive buffer still holds an unread byte from a previous
transfer. The new byte is not transferred to the receive buffer, allowing the previously received
data byte to be read. The data byte which caused the overrun is lost.
C8051F040/1/2/3/4/5/6/7
260 Rev. 1.5
20.5. Serial Clock Timing
As shown in Figure 20.5, four combinations of serial clock phase and polarity can be selected using the
clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one
of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-
high or active-low clock. Both master and slave devices must be configured to use the same clock phase
and polarity. Note: SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the
clock phase or polarity.
Note that in master mode, the SPI samples MISO one system clock before the inactive edge of SCK (the
edge where MOSI changes state) to provide maximum settling time for the slave device.
The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 20.3 controls the master mode
serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured
as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency. When the
SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the
system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial
input data synchronously with the system clock. If the master issues SCK, NSS, and the serial input data
asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock fre-
quency. In the special case where the master only wants to transmit data to the slave and does not need to
receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data
transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK,
NSS, and the serial input data synchronously with the system clock.
Figure 20.5. Data/Clock Timing Diagram
SCK
(CKPOL=0, CKPHA=0)
SCK
(CKPOL=0, CKPHA=1)
SCK
(CKPOL=1, CKPHA=0)
SCK
(CKPOL=1, CKPHA=1)
MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MISO/MOSI
NSS
C8051F040/1/2/3/4/5/6/7
Rev. 1.5 261
20.6. SPI Special Function Registers
SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN
Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate
Register. The four special function registers related to the operation of the SPI0 Bus are described in the
following definitions.
SFR Definition 20.1. SPI0CFG: SPI0 Configuration
Bit 7: SPIBSY: SPI Busy.
This bit is set to logic 1 when a SPI transfer is in progress (Master or slave Mode).
Bit 6: MSTEN: Master Mode Enable.
0: Disable master mode. Operate in slave mode.
1: Enable master mode. Operate as a master.
Bit 5: CKPHA: SPI0 Clock Phase.
This bit controls the SPI0 clock phase.
0: Data sampled on first edge of SCK period.
1: Data sampled on second edge of SCK period.
Bit 4: CKPOL: SPI0 Clock Polarity.
This bit controls the SPI0 clock polarity.
0: SCK line low in idle state.
1: SCK line high in idle state.
Bit 3: SLVSEL: Slave Selected Flag.
This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected slave. It
is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the
instantaneous value at the NSS pin, but rather a de-glitched version of the pin input.
Bit 2: NSSIN: NSS Instantaneous Pin Input.
This bit mimics the instantaneous value that is present on the NSS port pin at the time that
the register is read. This input is not de-glitched.
Bit 1: SRMT: Shift Register Empty (Valid in Slave Mode).
This bit will be set to logic 1 when all data has been transferred in/out of the shift register,
and there is no new information available to read from the transmit buffer or write to the
receive buffer. It returns to logic 0 when a data byte is transferred to the shift register from
the transmit buffer or by a transition on SCK.
NOTE: SRMT = 1 when in Master Mode.
Bit 0: RXBMT: Receive Buffer Empty (Valid in Slave Mode).
This bit will be set to logic 1 when the receive buffer has been read and contains no new
information. If there is new information available in the receive buffer that has not been read,
this bit will return to logic 0.
NOTE: RXBMT = 1 when in Master Mode.
R R/W R/W R/W R R R R Reset Value
SPIBSY MSTEN CKPHA CKPOL SLVSEL NSSIN SRMT RXBMT 00000111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
SFR Address:
SFR Page:
0x9A
0
PREVIOUS8081828384858687888990919293NEXT