Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

C8051F041-GQ

Part # C8051F041-GQ
Description MCU 8BIT CISC 64KB FLASH 3V 64TQFP - Trays
Category IC
Availability In Stock
Qty 2
Qty Price
1 + $20.05559
Manufacturer Available Qty
SILICON LABORATORIES
Date Code: 0903
  • Shipping Freelance Stock: 2
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

C8051F040/1/2/3/4/5/6/7
166 Rev. 1.5
13.1. Power-On Reset
The C8051F04x family incorporates a power supply monitor that holds the MCU in the reset state until V
DD
rises above the V
RST
level during power-up. See Figure 13.2 for timing diagram, and refer to Table 13.1 for
the Electrical Characteristics of the power supply monitor circuit. The /RST pin is asserted low until the end
of the 100 ms V
DD
Monitor timeout in order to allow the V
DD
supply to stabilize. The V
DD
Monitor reset is
enabled and disabled using the external V
DD
monitor enable pin (MONEN).
On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. All of the other
reset flags in the RSTSRC register are indeterminate. PORSF is cleared by all other resets. Since all
resets cause program execution to begin at the same location (0x0000), software can read the PORSF
flag to determine if a power-up was the cause of reset. The contents of internal data memory should be
assumed to be undefined after a power-on reset.
Figure 13.2. Reset Timing
13.2. Power-Fail Reset
When a power-down transition or power irregularity causes V
DD
to drop below V
RST
, the power supply
monitor will drive the /RST pin low and return the CIP-51 to the reset state. When V
DD
returns to a level
above V
RST
, the CIP-51 will leave the reset state in the same manner as that for the power-on reset (see
Figure 13.2). Note that even though internal data memory contents are not altered by the power-fail reset,
it is impossible to determine if V
DD
dropped below the level required for data retention. If the PORSF flag is
set to logic 1, the data may no longer be valid.
13.3. External Reset
The external /RST pin provides a means for external circuitry to force the MCU into a reset state. Asserting
the /RST pin low will cause the MCU to enter the reset state. It may be desirable to provide an external pul-
VDD Monitor ResetPower-On Reset
/RST
t
volts
1.0
2.0
Logic HIGH
Logic LOW
Reset Time
Delay
Reset Time
Delay
V
D
D
2.70
2.55
V
RST
C8051F040/1/2/3/4/5/6/7
Rev. 1.5 167
lup and/or decoupling of the /RST pin to avoid erroneous noise-induced resets. The MCU will remain in
reset until at least 12 clock cycles after the active-low /RST signal is removed. The PINRSF flag (RST-
SRC.0) is set on exit from an external reset.
13.4. Missing Clock Detector Reset
The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If
the system clock goes away for more than 100 µs, the one-shot will time out and generate a reset. After a
Missing Clock Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MCD as the reset
source; otherwise, this bit reads ‘0’. The state of the /RST pin is unaffected by this reset. Setting the
MCDRSF bit, RSTSRC.2 (see Section “14. Oscillators” on page 173) enables the Missing Clock Detector.
13.5. Comparator0 Reset
Comparator0 can be configured as a reset input by writing a ‘1’ to the C0RSEF flag (RSTSRC.5).
Comparator0 should be enabled using CPT0CN.7 (see Section “11. Comparators” on page 121) prior to
writing to C0RSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The
Comparator0 reset is active-low: if the non-inverting input voltage (CP0+ pin) is less than the inverting
input voltage (CP0- pin), the MCU is put into the reset state. After a Comparator0 Reset, the C0RSEF flag
(RSTSRC.5) will read ‘1’ signifying Comparator0 as the reset source; otherwise, this bit reads ‘0’. The state
of the /RST pin is unaffected by this reset.
13.6. External CNVSTR0 Pin Reset
The external CNVSTR0 signal can be configured as a reset input by writing a ‘1’ to the CNVRSEF flag
(RSTSRC.6). The CNVSTR0 signal can appear on any of the P0, P1, P2 or P3 I/O pins as described in
Section “17.1. Ports 0 through 3 and the Priority Crossbar Decoder” on page 204. Note that the Cross-
bar must be configured for the CNVSTR0 signal to be routed to the appropriate Port I/O. The Crossbar
should be configured and enabled before the CNVRSEF is set. When configured as a reset, CNVSTR0 is
active-low and level sensitive. After a CNVSTR0 reset, the CNVRSEF flag (RSTSRC.6) will read ‘1’ signi-
fying CNVSTR0 as the reset source; otherwise, this bit reads ‘0’. The state of the /RST pin is unaffected by
this reset.
13.7. Watchdog Timer Reset
The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. A WDT overflow
will force the MCU into the reset state. To prevent the reset, the WDT must be restarted by application soft-
ware before overflow. If the system experiences a software or hardware malfunction preventing the soft-
ware from restarting the WDT, the WDT will overflow and cause a reset. This should prevent the system
from running out of control.
Following a reset the WDT is automatically enabled and running with the default maximum time interval. If
desired the WDT can be disabled by system software or locked on to prevent accidental disabling. Once
locked, the WDT cannot be disabled until the next system reset. The state of the /RST pin is unaffected by
this reset.
The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the
period between specific writes to its control register. If this period exceeds the programmed limit, a WDT
reset is generated. The WDT can be enabled and disabled as needed in software, or can be permanently
enabled if desired. Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN)
shown in SFR Definition 13.1.
C8051F040/1/2/3/4/5/6/7
168 Rev. 1.5
13.7.1. Enable/Reset WDT
The watchdog timer is both enabled and reset by writing 0xA5 to the WDTCN register. The user's applica-
tion software should include periodic writes of 0xA5 to WDTCN as needed to prevent a watchdog timer
overflow. The WDT is enabled and reset as a result of any system reset.
13.7.2. Disable WDT
Writing 0xDE followed by 0xAD to the WDTCN register disables the WDT. The following code segment
illustrates disabling the WDT:
CLR EA ; disable all interrupts
MOV WDTCN,#0DEh ; disable software watchdog timer
MOV WDTCN,#0ADh
SETB EA ; re-enable interrupts
The writes of 0xDE and 0xAD must occur within 4 clock cycles of each other, or the disable operation is
ignored. Interrupts should be disabled during this procedure to avoid delay between the two writes.
13.7.3. Disable WDT Lockout
Writing 0xFF to WDTCN locks out the disable feature. Once locked out, the disable operation is ignored
until the next system reset. Writing 0xFF does not enable or reset the watchdog timer. Applications always
intending to use the watchdog should write 0xFF to WDTCN in the initialization code.
13.7.4. Setting WDT Interval
WDTCN.[2:0] control the watchdog timeout interval. The interval is given by the following equation:
; where T
sysclk
is the system clock period.
For a 3 MHz system clock, this provides an interval range of 0.021 ms to 349.5 ms. WDTCN.7 must be
logic 0 when setting this interval. Reading WDTCN returns the programmed interval. WDTCN.[2:0] reads
111b after a system reset.
4
3 WDTCN 20+
T
sysclk
PREVIOUS4950515253545556575859606162NEXT