Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

C8051F041-GQ

Part # C8051F041-GQ
Description MCU 8BIT CISC 64KB FLASH 3V 64TQFP - Trays
Category IC
Availability In Stock
Qty 2
Qty Price
1 + $20.05559
Manufacturer Available Qty
SILICON LABORATORIES
Date Code: 0903
  • Shipping Freelance Stock: 2
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

C8051F040/1/2/3/4/5/6/7
Rev. 1.5 151
SFR Definition 12.8. PSW: Program Status Word
Bit7: CY: Carry Flag.
This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow
(subtraction). It is cleared to 0 by all other arithmetic operations.
Bit6: AC: Auxiliary Carry Flag
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow
from (subtraction) the high order nibble. It is cleared to 0 by all other arithmetic operations.
Bit5: F0: User Flag 0.
This is a bit-addressable, general purpose flag for use under software control.
Bits4-3: RS1-RS0: Register Bank Select.
These bits select which register bank is used during register accesses.
Bit2: OV: Overflow Flag.
This bit is set to 1 under the following circumstances:
An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
A MUL instruction results in an overflow (result is greater than 255).
A DIV instruction causes a divide-by-zero condition.
The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all
other cases.
Bit1: F1: User Flag 1.
This is a bit-addressable, general purpose flag for use under software control.
Bit0: PARITY: Parity Flag.
This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum
is even.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
CY AC F0 RS1 RS0 OV F1 PARITY 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Bit
Addressable
SFR Address:
SFR Page:
0xD0
All Pages
RS1 RS0 Register Bank Address
0 0 0 0x00–0x07
0 1 1 0x08–0x0F
1 0 2 0x10–0x17
1 1 3 0x18–0x1F
C8051F040/1/2/3/4/5/6/7
152 Rev. 1.5
SFR Definition 12.9. ACC: Accumulator
SFR Definition 12.10. B: B Register
Bits7-0: ACC: Accumulator.
This register is the accumulator for arithmetic operations.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Bit
Addressable
SFR Address:
SFR Page:
0xE0
All Pages
Bits7-0: B: B Register.
This register serves as a second accumulator for certain arithmetic operations.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Bit
Addressable
SFR Address:
SFR Page:
0xF0
All Pages
C8051F040/1/2/3/4/5/6/7
Rev. 1.5 153
12.3. Interrupt Handler
The CIP-51 includes an extended interrupt system supporting a total of 20 interrupt sources with two prior-
ity levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies
according to the specific version of the device. Each interrupt source has one or more associated interrupt-
pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition,
the associated interrupt-pending flag is set to logic 1.
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.
Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE-EIE2). However, interrupts must first be globally enabled by setting the EA bit
(IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables
all interrupt sources regardless of the individual interrupt-enable settings.
Note:
Any instruction that clears the EA bit should be immediately followed by an instruction that has two
or more opcode bytes. For example:
// in 'C':
EA = 0; // clear EA bit
EA = 0; // ... followed by another 2-byte opcode
; in assembly:
CLR EA ; clear EA bit
CLR EA ; ... followed by another 2-byte opcode
If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears
the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. How-
ever, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is
followed by a multi-cycle instruction, the interrupt will not be taken.
Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.
12.3.1. MCU Interrupt Sources and Vectors
The MCUs support 20 interrupt sources. Software can simulate an interrupt event by setting any interrupt-
pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the
CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources,
associated vector addresses, priority order and control bits are summarized in Table 12.4. Refer to the
datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt
conditions for the peripheral and the behavior of its interrupt-pending flag(s).
PREVIOUS4445464748495051525354555657NEXT