Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

ATMEGA48-20AU

Part # ATMEGA48-20AU
Description MCU 8BIT ATMEGA RISC 4KB FLASH 3.3V/5V 32TQFP - Trays
Category IC
Availability Out of Stock
Qty 0
Qty Price
1 + $1.49230



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

262
2545M–AVR–09/07
ATmega48/88/168
When designing a system where debugWIRE will be used, the following observations must be
made for correct operation:
Pull-up resistors on the dW/(RESET) line must not be smaller than 10kΩ. The pull-up resistor
is not required for debugWIRE functionality.
Connecting the RESET pin directly to V
CC
will not work.
Capacitors connected to the RESET pin must be disconnected when using debugWire.
All external reset sources must be disconnected.
24.4 Software Break Points
debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a
Break Point in AVR Studio
®
will insert a BREAK instruction in the Program memory. The instruc-
tion replaced by the BREAK instruction will be stored. When program execution is continued, the
stored instruction will be executed before continuing from the Program memory. A break can be
inserted manually by putting the BREAK instruction in the program.
The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.
24.5 Limitations of debugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.
The debugWIRE system shares system clock with the SPI module. Thus the PRSPI bit in the
PRR register must not be set when debugging. Setting the PRSPI bit will disable the clock to the
debugWIRE module and may lead to lockup of the device.
A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.
24.6 Register Description
The following section describes the registers used with the debugWire.
24.6.1 DWDR – debugWire Data Register
The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.
Bit 76543210
DWDR[7:0] DWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
263
2545M–AVR–09/07
ATmega48/88/168
25. Self-Programming the Flash, ATmega48
25.1 Overview
In ATmega48, there is no Read-While-Write support, and no separate Boot Loader Section. The
SPM instruction can be executed from the entire Flash.
The device provides a Self-Programming mechanism for downloading and uploading program
code by the MCU itself. The Self-Programming can use any available data interface and associ-
ated protocol to read code and write (program) that code into the Program memory.
The Program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page
buffer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:
Alternative 1, fill the buffer before a Page Erase
Fill temporary page buffer
Perform a Page Erase
Perform a Page Write
Alternative 2, fill the buffer after Page Erase
Perform a Page Erase
Fill temporary page buffer
Perform a Page Write
If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be re-written. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the same
page.
25.1.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “00000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.
The CPU is halted during the Page Erase operation.
25.1.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.
264
2545M–AVR–09/07
ATmega48/88/168
If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.
25.1.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “00000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.
The CPU is halted during the Page Write operation.
25.2 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.
Since the Flash is organized in pages (see Table 27-9 on page 290), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 26-3. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the software addresses the
same page in both the Page Erase and Page Write operation.
The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.
Figure 25-1. Addressing the Flash During SPM
(1)
Note: 1. The different variables used in Figure 26-3 are listed in Table 27-9 on page 290.
Bit 151413121110 9 8
ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8
ZL (R30) Z7Z6Z5Z4Z3Z2Z1Z0
76543210
PROGRAM MEMORY
0115
Z - REGISTER
BIT
0
ZPAGEMSB
WORD ADDRESS
WITHIN A PAGE
PAGE ADDRESS
WITHIN THE FLASH
ZPCMSB
INSTRUCTION WORD
PAG E
PCWORD[PAGEMSB:0]:
00
01
02
PAGEEND
PAG E
PCWORDPCPAGE
PCMSB
PAGEMSB
PROGRAM
COUNTER
PREVIOUS8182838485868788899091929394NEXT