Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

ATMEGA48-20AU

Part # ATMEGA48-20AU
Description MCU 8BIT ATMEGA RISC 4KB FLASH 3.3V/5V 32TQFP - Trays
Category IC
Availability Out of Stock
Qty 0
Qty Price
1 + $1.49230



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

49
2545M–AVR–09/07
ATmega48/88/168
Figure 10-5. Brown-out Reset During Operation
10.6 Watchdog System Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period t
TOUT
. Refer to
page 50 for details on operation of the Watchdog Timer.
Figure 10-6. Watchdog System Reset During Operation
10.7 Internal Voltage Reference
ATmega48/88/168 features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC.
10.7.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in “System and Reset Characteristics” on page 308. To save power, the
reference is not always turned on. The reference is on during the following situations:
1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuses).
2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).
3. When the ADC is enabled.
V
CC
RESET
T
IME-OUT
I
NTERNAL
RESET
V
BOT-
V
BOT+
t
TOUT
CK
CC
50
2545M–AVR–09/07
ATmega48/88/168
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.
10.8 Watchdog Timer
10.8.1 Features
Clocked from separate On-chip Oscillator
3 Operating modes
–Interrupt
System Reset
Interrupt and System Reset
Selectable Time-out period from 16ms to 8s
Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode
Figure 10-7. Watchdog Timer
ATmega48/88/168 has an Enhanced Watchdog Timer (WDT). The WDT is a timer counting
cycles of a separate on-chip 128 kHz oscillator. The WDT gives an interrupt or a system reset
when the counter reaches a given time-out value. In normal operation mode, it is required that
the system uses the WDR - Watchdog Timer Reset - instruction to restart the counter before the
time-out value is reached. If the system doesn't restart the counter, an interrupt or system reset
will be issued.
In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.
128kHz
OSCILLATOR
OSC/2K
OSC/4K
OSC/8K
OSC/16K
OSC/32K
OSC/64K
OSC/128K
OSC/256K
OSC/512K
OSC/1024K
WDP0
WDP1
WDP2
WDP3
WATCHDOG
RESET
WDE
WDIF
WDIE
MCU RESET
INTERRUPT
51
2545M–AVR–09/07
ATmega48/88/168
The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-
tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt
mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security, alter-
ations to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE
and changing time-out configuration is as follows:
1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and
WDE. A logic one must be written to WDE regardless of the previous value of the WDE
bit.
2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.
The following code example shows one assembly and one C function for turning off the Watch-
dog Timer. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during the execution of these functions.
PREVIOUS1011121314151617181920212223NEXT