Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

AT45DB081D-SU-2.5

Part # AT45DB081D-SU-2.5
Description DATAFLASH, 8M, SERIAL, 2.5V -IND TEMP, GREEN 8 LEAD SOIC
Category IC
Availability Out of Stock
Qty 0
Qty Price
1 + $0.65000



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

25
3596E–DFLASH–02/07
AT45DB081D
13. “Power of 2” Binary Page Size Option
“Power of 2” binary page size Configuration Register is a user-programmable nonvolatile regis-
ter that allows the page size of the main memory to be configured for binary page size
(256 bytes) or DataFlash standard page size (264 bytes). The “power of 2” page size is a
One-time Programmable (OTP) register and once the device is configured for “power of
2” page size, it cannot be reconfigured again. The devices are initially shipped with the page
size set to 264 bytes.
13.1 Programming the Configuration Register
To program the Configuration Register for “power of 2” binary page size, the CS pin must first be
asserted as it would be with any other command. Once the CS
pin has been asserted, the
appropriate 4-byte opcode sequence must be clocked into the device in the correct order. The
4-byte opcode sequence must start with 3DH and be followed by 2AH, 80H, and A6H. After the
last bit of the opcode sequence has been clocked in, the CS
pin must be deasserted to initiate
the internally self-timed program cycle. The programming of the Configuration Register should
take place in a time of t
P
, during which time the Status Register will indicate that the device is
busy. The device must be power-cycled after the completion of the program cycle to set the
“power of 2” page size. If the device is powered-down before the completion of the program
cycle, then setting the Configuration Register cannot be guaranteed. However, the user should
check bit 0 of the status register to see whether the page size was configured for binary page
size. If not, the command can be re-issued again.
Figure 13-1. Erase Sector Protection Register
14. Manufacturer and Device ID Read
Identification information can be read from the device to enable systems to electronically query
and identify the device while it is in system. The identification method and the command opcode
comply with the JEDEC standard for “Manufacturer and Device ID Read Methodology for SPI
Compatible Serial Interface Memory Devices”. The type of information that can be read from the
device includes the JEDEC defined Manufacturer ID, the vendor specific Device ID, and the ven-
dor specific Extended Device Information.
To read the identification information, the CS
pin must first be asserted and the opcode of 9FH
must be clocked into the device. After the opcode has been clocked in, the device will begin out-
putting the identification data on the SO pin during the subsequent clock cycles. The first byte
that will be output will be the Manufacturer ID followed by two bytes of Device ID information.
The fourth byte output will be the Extended Device Information String Length, which will be 00H
indicating that no Extended Device Information follows. As indicated in the JEDEC standard,
reading the Extended Device Information String Length and any subsequent data is optional.
Command Byte 1 Byte 2 Byte 3 Byte 4
Power of Two Page Size 3DH 2AH 80H A6H
Opcode
Byte 1
Opcode
Byte 2
Opcode
Byte 3
Opcode
Byte 4
CS
Each transition
represents 8 bits
SI
26
3596E–DFLASH–02/07
AT45DB081D
Deasserting the CS pin will terminate the Manufacturer and Device ID Read operation and put
the SO pin into a high-impedance state. The CS
pin can be deasserted at any time and does not
require that a full byte of data be read.
14.1 Manufacturer and Device ID Information
Note: Based on JEDEC publication 106 (JEP106), Manufacturer ID data can be comprised of any number of bytes. Some manufacturers may have
Manufacturer ID codes that are two, three or even four bytes long with the first byte(s) in the sequence being 7FH. A system should detect code
7FH as a “Continuation Code” and continue to read Manufacturer ID bytes. The first non-7FH byte would signify the last byte of Manufacturer ID
data. For Atmel (and some other manufacturers), the Manufacturer ID data is comprised of only one byte.
14.1.1 Byte 1 – Manufacturer ID
Hex
Value
JEDEC Assigned Code
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1FH 0 0 0 1 1 1 1 1 Manufacturer ID 1FH = Atmel
14.1.2 Byte 2 – Device ID (Part 1)
Hex
Value
Family Code Density Code
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Family Code 001 = DataFlash
25H 0 0 1 0 0 1 0 1 Density Code 00101 = 8-Mbit
14.1.3 Byte 3 – Device ID (Part 2)
Hex
Value
MLC Code Product Version Code
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MLC Code 000 = 1-bit/Cell Technology
00H 0 0 0 0 0 0 0 0 Product Version 00000 = Initial Version
14.1.4 Byte 4 – Extended Device Information String Length
Hex
Value
Byte Count
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
00H 0 0 0 0 0 0 0 0 Byte Count 00H = 0 Bytes of Information
9FH
Manufacturer ID
Byte n
Device ID
Byte 1
Device ID
Byte 2
This information would only be output
if the Extended Device Information String Length
value was something other than 00H.
Extended
Device
Information
String Length
Extended
Device
Information
Byte x
Extended
Device
Information
Byte x + 1
CS
1FH
25H 00H
00H Data Data
SI
SO
Opcode
Each transition
represents 8 bits
27
3596E–DFLASH–02/07
AT45DB081D
14.2 Operation Mode Summary
The commands described previously can be grouped into four different categories to better
describe which commands can be executed at what times.
Group A commands consist of:
1. Main Memory Page Read
2. Continuous Array Read
3. Read Sector Protection Register
4. Read Sector Lockdown Register
5. Read Security Register
Group B commands consist of:
1. Page Erase
2. Block Erase
3. Sector Erase
4. Chip Erase
5. Main Memory Page to Buffer 1 (or 2) Transfer
6. Main Memory Page to Buffer 1 (or 2) Compare
7. Buffer 1 (or 2) to Main Memory Page Program with Built-in Erase
8. Buffer 1 (or 2) to Main Memory Page Program without Built-in Erase
9. Main Memory Page Program through Buffer 1 (or 2)
10. Auto Page Rewrite
Group C commands consist of:
1. Buffer 1 (or 2) Read
2. Buffer 1 (or 2) Write
3. Status Register Read
4. Manufacturer and Device ID Read
Group D commands consist of:
1. Erase Sector Protection Register
2. Program Sector Protection Register
3. Sector Lockdown
4. Program Security Register
If a Group A command is in progress (not fully completed), then another command in Group A,
B, C, or D should not be started. However, during the internally self-timed portion of Group B
commands, any command in Group C can be executed. The Group B commands using buffer 1
should use Group C commands using buffer 2 and vice versa. Finally, during the internally self-
timed portion of a Group D command, only the Status Register Read command should be
executed.
PREVIOUS23456789101112131415NEXT