Freelance Electronics Components Distributor
Closed Dec 25th-26th
800-300-1968
We Stock Hard to Find Parts

8A/S6

Part # 8A/S6
Description Incandescent S Light Lamp
Category LAMP
Availability In Stock
Qty 2
Qty Price
1 + $2.43518
Manufacturer Available Qty
General Electric
  • Shipping Freelance Stock: 2
    Ships Immediately



Technical Document


DISCLAIMER: The information provided herein is solely for informational purposes. Customers must be aware of the suitability of this product for their application, and consider that variable factors such as Manufacturer, Product Category, Date Codes, Pictures and Descriptions may differ from available inventory.

Clock Generator Module (CGM)
Technical Data MC68HC908AZ60A — Rev 2.0
190 Clock Generator Module (CGM) MOTOROLA
10.8.2 Stop Mode
The STOP instruction disables the CGM and holds low all CGM outputs
(CGMXCLK, CGMOUT, and CGMINT).
If CGMOUT is being driven by CGMVCLK and a STOP instruction is
executed; the PLL will clear the BCS bit in the PLL control register,
causing CGMOUT to be driven by CGMXCLK. When the MCU recovers
from STOP, the crystal clock divided by two drives CGMOUT and BCS
remains clear.
10.9 CGM During Break Interrupts
The BCFE bit in the break flag control register (BFCR) enables software
to clear status bits during the break state. See Break Module (BRK) on
page 203.
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the PLLF bit during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
the PLL control register during the break state without affecting the PLLF
bit.
10.10 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the
most critical PLL design parameters. Proper design and use of the PLL
ensures the highest stability and lowest acquisition/lock times.
10.10.1 Acquisition/Lock Time Definitions
Typical control systems refer to the acquisition time or lock time as the
reaction time, within specified tolerances, of the system to a step input.
In a PLL, the step input occurs when the PLL is turned on or when it
suffers a noise hit. The tolerance is usually specified as a percent of the
Clock Generator Module (CGM)
Acquisition/Lock Time Specifications
MC68HC908AZ60A — Rev 2.0 Technical Data
MOTOROLA Clock Generator Module (CGM) 191
step input or when the output settles to the desired value plus or minus
a percent of the frequency change. Therefore, the reaction time is
constant in this definition, regardless of the size of the step input. For
example, consider a system with a 5% acquisition time tolerance. If a
command instructs the system to change from 0 Hz to 1 MHz, the
acquisition time is the time taken for the frequency to reach
1MHz±50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is
operating at 1 MHz and suffers a –100 kHz noise hit, the acquisition time
is the time taken to return from 900 kHz to 1 MHz ±5 kHz. Five kHz = 5%
of the 100-kHz step input.
Other systems refer to acquisition and lock times as the time the system
takes to reduce the error between the actual output and the desired
output to within specified tolerances. Therefore, the acquisition or lock
time varies according to the original error in the output. Minor errors may
not even be registered. Typical PLL applications prefer to use this
definition because the system requires the output frequency to be within
a certain tolerance of the desired frequency regardless of the size of the
initial error.
The discrepancy in these definitions makes it difficult to specify an
acquisition or lock time for a typical PLL. Therefore, the definitions for
acquisition and lock times for this module are:
Acquisition time, t
acq
, is the time the PLL takes to reduce the error
between the actual output frequency and the desired output
frequency to less than the tracking mode entry tolerance,
trk
.
Acquisition time is based on an initial frequency error,
(f
des
–f
orig
)/f
des
, of not more than ±100%. In automatic bandwidth
control mode (see Manual and Automatic PLL Bandwidth
Modes on page 175), acquisition time expires when the ACQ bit
becomes set in the PLL bandwidth control register (PBWC).
Lock time, t
Lock
, is the time the PLL takes to reduce the error
between the actual output frequency and the desired output
frequency to less than the lock mode entry tolerance,
Lock
. Lock
time is based on an initial frequency error, (f
des
– f
orig
)/f
des
, of not
more than ±100%. In automatic bandwidth control mode, lock time
Clock Generator Module (CGM)
Technical Data MC68HC908AZ60A — Rev 2.0
192 Clock Generator Module (CGM) MOTOROLA
expires when the LOCK bit becomes set in the PLL bandwidth
control register (PBWC). (See Manual and Automatic PLL
Bandwidth Modes on page 175).
Obviously, the acquisition and lock times can vary according to how
large the frequency error is and may be shorter or longer in many cases.
10.10.2 Parametric Influences on Reaction Time
Acquisition and lock times are designed to be as short as possible while
still providing the highest possible stability. These reaction times are not
constant, however. Many factors directly and indirectly affect the
acquisition time.
The most critical parameter which affects the reaction times of the PLL
is the reference frequency, f
CGMRDV
(please reference Figure 10-1).
This frequency is the input to the phase detector and controls how often
the PLL makes corrections. For stability, the corrections must be small
compared to the desired frequency, so several corrections are required
to reduce the frequency error. Therefore, the slower the reference the
longer it takes to make these corrections. This parameter is also under
user control via the choice of crystal frequency f
CGMXCLK
.
Another critical parameter is the external filter capacitor. The PLL
modifies the voltage on the VCO by adding or subtracting charge from
this capacitor. Therefore, the rate at which the voltage changes for a
given frequency error (thus a change in charge) is proportional to the
capacitor size. The size of the capacitor also is related to the stability of
the PLL. If the capacitor is too small, the PLL cannot make small enough
adjustments to the voltage and the system cannot lock. If the capacitor
is too large, the PLL may not be able to adjust the voltage in a
reasonable time. See Choosing a Filter Capacitor on page 193.
Also important is the operating voltage potential applied to V
DDA
. The
power supply potential alters the characteristics of the PLL. A fixed value
is best. Variable supplies, such as batteries, are acceptable if they vary
within a known range at very slow speeds. Noise on the power supply is
not acceptable, because it causes small frequency errors which
continually change the acquisition time of the PLL.
PREVIOUS5758596061626364656667686970NEXT